
Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 36 www.journals.savap.org.pk

SOFTWARE ENGINEERING METHODOLOGY FOR DEVELOPING

SYSTEM SOFTWARE

Ezekwe Chinwe Genevra
1
, Ugah John Otozi

2
,

Okoh Felix Jigiedous

3

Edeh Eucharia Ujunwa
4
 ,Okoye Joy Anulika

5

1
Electronics Development Institute, Awka National agency for Science and Engineering

Infrastructure (NASENI)Federal ministry of Science and Technology,
2
Department of Computer

Science, Ebonyi State University, Abakiliki,
3
Federal College of Education, Asaba,

4
Project Development Institute, Enugu,

5
Department of Electronics and Electrical Engineering,

Chukwuemeka Odumegwu Ojukwu University, Uli, NIGERIA.

1
norakingchi@yahoo.com,

2
ugah@gmail.com

3
jigiefelix@yahoo.com

4
ujuedeh@yahoo.com, joynuli.ok98@gmail.com

ABSTRACT

A decades-long goal has been to find repeatable, predictable processes that improve

productivity and quality. Some try to systematize or formalize the seemingly unruly
task of designing software. Others apply project management techniques to designing

software. Without effective project management, software projects can easily be

delivered late or over budget. With large numbers of software projects not meeting

their expectations in terms of functionality, cost, or delivery schedule, it is effective
project management that appears to be lacking. The Microsoft solution framework

came to the rescue of these long lasting problems using its best component called

MSF for Capability Maturity Model Integration Process Improvement methodology
(MSF4CMMI) which is a process improvement approach that provides organizations

with the essential elements of continuous process improvement resulting in a reduced

Software Development Life Cycle, improved ability to meet the cost and schedule
targets, building products of high quality. The MSF4CMMI has extended the

MSF4ASD guidance with additional formality, reviews, verification and audit. This

results in a Software Engineering Products that relied on process and conformance

to process rather than relying purely on trust and the ability of the individual team
members.

Key words: system software, software methodology, software engineering and

Microsoft solution framework

INTRODUCTION

In software engineering, a software development methodology (also known as a system

development methodology, software development life cycle, software development process,

software process) is a division of the software development work into distinct phases or

activities, with the intent of better planning and management. A system development

methodology refers to the framework that is used to structure, plan, and control the process of

developing an information system by Alan (2004). A wide variety of such frameworks have

evolved over the years, each with its own recognized strengths and weaknesses. It is often

considered as a subset of the systems development life cycle. The methodology may include

the pre-definition of specific deliverables and artifacts that are created and completed by a

project team to develop or maintain an application. Common methodologies include: a)

waterfall, b) prototyping, c) iterative and incremental development, d) spiral development, e)

rapid application development, and f) Extreme programming.

Some people consider a life-cycle "model" a more general term for a category of

methodologies and a software development "process" a more specific term to refer to a

mailto:norakingchi@yahoo.com
mailto:jigiefelix@yahoo.com
mailto:ujuedeh@yahoo.com
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Systems_development_life-cycle
http://en.wikipedia.org/wiki/Software_review
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/w/index.php?title=Software_quality_audit&action=edit&redlink=1
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Systems_development_life_cycle
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Spiral_development
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Extreme_programming

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 37 www.journals.savap.org.pk

specific process chosen by a specific organization. For example, there are many specific

software development processes that fit the spiral life-cycle model. One system development

methodology is not necessarily suitable for use by all projects. Each of the available

methodologies is best suited to specific kinds of projects, based on various technical,

organizational, project and team considerations.

HISTORICAL BACKGROUND

The software development methodology (also known as SDM) framework did not emerge

until the 1960s. According to Elliott (2004) the systems development life cycle (SDLC) can

be considered to be the oldest formalized methodology framework for building information

systems. The main idea of the SDLC has been "to pursue the development of information

systems in a very deliberate, structured and methodical way, requiring each stage of the life

cycle from inception of the idea to delivery of the final system, to be carried out rigidly and

sequentially"(Kuhn, 1989) within the context of the framework being applied. The main

target of this methodology framework in the 1960s was "to develop large scale functional

business systems in an age of large scale business conglomerates. Information systems

activities revolved around heavy data processing and number crunching routines".(Kuhn,

1989) Methodologies, processes, and frameworks range from specific proscriptive steps that

can be used directly by an organization in day-to-day work, to flexible frameworks that an

organization uses to generate a custom set of steps tailored to the needs of a specific project

or group. In some cases a "sponsor" or "maintenance" organization distributes an official set

of documents that describe the process.

RELATED LITERATURES

Alan (2004) defines Systems software as the computer software designed to operate and

control the computer hardware and to provide a platform for running application software. In

some publications, the term system software also includes software development tools (like

compiler, linker or debugger). In contrast to system software, software that allows users to do

things like create text documents, play games, listen to music, or web browsers to surf the

web are called application software. Exceptions could be e.g. web browsers such as Internet

Explorer where Microsoft argued in court that it was system software that could not be

uninstalled. Later examples are Chrome OS and Firefox OS where the browser functions as

the only user interface and the only way to run programs (and other web browser cannot be

installed in their place), then they can well be argued to be (part of) the operating system and

then system software. System software can be separated into four different categories,

operating systems, utility software, library program and translator software (Edward,2003).

Operating System

An operating system is a set of programs that manage computer hardware resources and

provide common services for application software as defined by Edward, (2003).

The operating system, like z/OS, Microsoft Windows, Mac OS X and Linux, allows the parts

of a computer to work together by performing tasks like transferring

data between memory and disks or rendering output onto a display device. It also provides a

platform to run high-level system software and application software. The operating system is

the most important type of system software in a computer system. Without an operating

system, a user cannot run an application program on their computer (unless the application

program is self booting).

http://en.wikipedia.org/wiki/Systems_development_life_cycle
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Business_system
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Number_crunching
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Internet_Explorer
http://en.wikipedia.org/wiki/Internet_Explorer
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Chrome_OS
http://en.wikipedia.org/wiki/Firefox_OS
http://en.wikipedia.org/wiki/operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Z/OS
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Application_software

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 38 www.journals.savap.org.pk

Time-sharing operating systems schedule tasks for efficient use of the system and may also

include accounting for cost allocation of processor time, mass storage, printing, and other

resources.

For hardware functions such as input/output and main memory management, the operating

system acts as a middleman between application programs and the computer hardware,

although the application code is usually executed directly by the hardware it will frequently

call by the OS or be interrupted by it. Operating systems can be found on almost any device

that contains a computer, from mobile phones and video game consoles to supercomputers

and web servers. The operating system is made up of these main parts by Edward (2003);

i. A kernel is the core part of the operating system that defines an Application program

Interface (API) for applications programs (including some system software) and an

interface to device drivers.

ii. Device drivers such as computer BIOS and device firmware provide basic

functionality to operate and control the hardware connected to or built into the

computer.

iii. A user interface "allows users to interact with a computer. Since the 1980s

the graphical user interface (GUI) has been perhaps the most common user interface

technology. The command-line interface is still a commonly used alternative.

Computer-aided software engineering

Computer-aided software engineering (CASE), in the field software engineering is the

scientific application of a set of tools and methods to software which results in high-quality,

defect-free, and maintainable software products. It also refers to methods for the development

of information systems together with automated tools that can be used in the software

development process as defined by Royce, (2012). The term "computer-aided software

engineering" (CASE) can refer to the software used for the automated development

of systems software, i.e., computer code. The CASE functions include analysis, design, and

programming.

CASE tools automate methods for designing, documenting, and producing structured

computer code in the desired programming language (Royce, 2012).

Two key ideas of Computer-aided Software System Engineering (CASE) are:

i. Foster computer assistance in software development and software

maintenance processes and

ii. An engineering approach to software development and or maintenance.

Typical CASE tools exist for configuration, management, data modeling, model

transformation, refactoring, source code generation, and Unified Modeling Language

System Software Development

System Software development is the computer programming, documentation, testing,

and bug fixing involved in creating and maintaining applications and frameworks involved in

a software release life cycle and resulting in a software product as defined by Whitten, et al

(2003). The term also refers to a process of writing and maintaining the source code, but in a

broader sense of the term it includes all that is involved between the conception of the desired

software through to the final manifestation of the system software, ideally in a planned

and structured process. Therefore, system software development may include research, new

http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/BIOS
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Systems_software
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Source_code_generation
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_bugs
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Software_product
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_development_process

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 39 www.journals.savap.org.pk

development, prototyping, modification, reuse, re-engineering, maintenance, or any other

activities that result in system software products.

Software can be developed for a variety of purposes, the three most common being;

i. to meet specific needs of a specific client/business (the case with custom system

software),

ii. to meet a perceived need of some set of potential users (the case

with commercial and open source system software), or

iii. for personal use in the case of embedded system software (e.g. a scientist may write

software to automate a mundane task).

Embedded software development

Embedded software development, that is, the development of embedded software that is

codes (in C or Assembly language) that are build and burn using a universal programmer into

the microcontrollers, PICs(programmable integrated circuits), PLDs (programmable logic

devices) such as for use in controlling consumer products, requires the development process

to be integrated with the development of the controlled physical product. System

software underlies applications and the programming process itself is often developed

separately before coupling with other components.

The need for better quality control of the software development process has given rise to the

discipline of software engineering, which aims to apply the systematic approach exemplified

in the engineering paradigm to the process of system software development.

System Software Development Activities

In system software development, there are some activities the developers must undergo

depending on the software development approach and the development life cycle, we will

highlight on five activities in this section.

Identification of need (Problem Identification)

The sources of ideas for system software products are legion. These ideas can come

from market research including the demographics of potential new customers, existing

customers, sales prospects who rejected the product, other internal system software

development staff, or a creative third party. Ideas for system software products are usually

first evaluated by marketing personnel for economic feasibility, for fit with existing channels

distribution, for possible effects on existing product lines, required features, and for fit with

the company's marketing objectives. In a marketing evaluation phase, the cost and time

assumptions become evaluated. A decision is reached early in the first phase as to whether,

based on the more detailed information generated by the marketing and development staff,

the project should be pursued further. (Whitten, et al 2003)

Planning

Planning is an objective of each and every activity, where we want to discover things that

belong to the project. An important task in creating a system software program is extracting

the requirements or requirements analysis.(Whitten, et al 2003) Customers typically have an

abstract idea of what they want as an end result, but do not know how to create system

software that will execute their ideas. Skilled and experienced software engineers recognize

incomplete, ambiguous, or even contradictory requirements at this point. Frequently

demonstrating live code may help reduce the risk that the requirements are incorrect.

http://en.wikipedia.org/wiki/Custom_software
http://en.wikipedia.org/wiki/Custom_software
http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/Commercial_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Embedded_software
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Quality_control
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Market_research
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Requirements_analysis

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 40 www.journals.savap.org.pk

Once the general requirements are gathered from the client, an analysis of the scope of the

development should be determined and clearly stated. This is often called a scope document.

Certain functionality may be out of scope of the project as a function of cost or as a result of

unclear requirements at the start of development. If the development is done externally, this

document can be considered a legal document so that if there are ever disputes, any

ambiguity of what was promised to the client can be clarified.

Designing

Once the requirements are established, the design of the software can be established in

a software design document. This involves a preliminary, or high-level design of the main

modules with an overall picture (such as a block diagram) of how the parts fit together. The

language and hardware components should all be known at this time. Then a detailed or low-

level design is created, perhaps with prototyping as proof-of-concept or to firm up

requirements.

Implementation, testing and documentation

Implementation is the part of the process where software engineers actually program the code

for the project.

Software testing is an integral and important phase of the software development process. This

part of the process ensures that defects are recognized as soon as possible.

Documenting the internal design of software for the purpose of future maintenance and

enhancement is done throughout development. This may also include the writing of an API,

be it external or internal. The software engineering process chosen by the developing team

will determine how much internal documentation (if any) is necessary. Plan-driven models

(like Waterfall model) generally produce more documentation than Agile models.

Deployment and maintenance

Deployment starts directly after the code is appropriately tested, approved for release, and

sold or otherwise distributed into a production environment. This may involve installation,

customization (such as by setting parameters to the customer's values), testing, and possibly

an extended period of evaluation(Whitten, et al 2003).

Software training and support is important, as software is only effective if it is used correctly.

Maintaining and enhancing software to cope with newly discovered faults or requirements

can take substantial time and effort, as missed requirements may force redesign of the

software.

SYSTEM SOFTWARE DEVELOPMENT METHODOLOGY

A software development methodology (also known as a software development process,

model, or life cycle) is a framework that is used to structure, plan, and control the process of

developing information systems as defined by Arcisphere (2012). A wide variety of such

frameworks have evolved over the years, each with its own recognized strengths and

weaknesses. There are several different approaches to software development: some take a

more structured, engineering-based approach to developing business solutions, whereas

others may take a more incremental approach, where software evolves as it is developed

piece-by-piece. One system development methodology is not necessarily suitable for use by

all projects. Each of the available methodologies is best suited to specific kinds of projects,

based on various technical, organizational, project and team considerations.

http://en.wikipedia.org/wiki/Software_design_document
http://en.wikipedia.org/wiki/High-level_design
http://en.wikipedia.org/wiki/Block_diagram
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Software_documentation
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_release
http://en.wikipedia.org/wiki/Technical_support
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Plan
http://en.wikipedia.org/wiki/Information_system

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 41 www.journals.savap.org.pk

Most methodologies share some combination of the following stages of software

development (Arcisphere, 2012):

i. Analyzing the problem

ii. Market research

iii. Gathering requirements for the proposed business solution

iv. Devising a plan or design for the software-based solution

v. Implementation (coding) of the software

vi. Testing the software

vii. Deployment

viii. Maintenance and bug fixing

These stages are often referred to collectively as the software development lifecycle (SDLC).

System software Development Methodology Approaches

Several software development approaches have been used since the origin of information

technology, in two main categories. Typically an approach or a combination of approaches

as in fig. 1 is chosen by management or a development team. Different approaches to

software development may carry out these stages in different orders, or devote more or less

time to different stages. The level of detail of the documentation produced at each stage of

software development may also vary. These stages may also be carried out in turn (a

“waterfall” based approach), or they may be repeated over various cycles or iterations (a

more "extreme" approach). The more extreme approach usually involves less time spent on

planning and documentation, and more time spent on coding and development of automated

tests. More “extreme” approaches also promote continuous testing throughout the

development lifecycle, as well as having a working (or bug-free) product at all times as stated

by Arcisphere (2012).

Fig. 1. Combined system software development methodology (Arcisphere (2012).

More structured or “waterfall” based approaches attempt to assess the majority of risks and

develop a detailed plan for the system software before implementation begins, and avoid

significant design changes and re-coding in life cycle planning.

http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_bugs
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/File:Three_software_development_patterns_mashed_together.svg

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 42 www.journals.savap.org.pk

Software Engineering Methodology for Developing System Software

In the development of system software, Microsoft Inc is the most popular developer. In this

sector we will lay emphasis on the methodology they are presently using for system software

development which is called Microsoft Solutions Framework (MSF). It is a set of principles,

models, disciplines, concepts, and guidelines for delivering information technology solutions

from Microsoft by McConnell, (2004). MSF is not limited to developing system software

only; it is also applicable to other IT projects like deployment, networking or infrastructure

projects. MSF does not force the developer to use a specific methodology (Waterfall, Agile,

etc) but lets them decide what methodology to use.

Goals of Microsoft solution Framework

i. Microsoft Solutions Framework (MSF) is a set of software engineering processes,

principles, and proven practices intended to enable developers to achieve success in

the software development life cycle (SDLC) (Whitten, 2003).

ii. MSF provides an adaptable guidance, based upon experiences and best practices from

inside and outside of Microsoft, to increase the chance of successful delivery of an

information technology solution to the customer by working fast, decreasing the

number of people on the project team, averting risk, while enabling high quality

results.

Components of Microsoft Solution Framework

The Microsoft Solution Framework version 4.0 is a combination of a metamodel which can

be used as a base for prescriptive software engineering processes, and two customizable and

scalable software engineering processes (McConnell, 2004). The MSF meta model consists

of

i. Foundational principles,

ii. a team model and cycles and

iii. Iterations.

MSF 4.0 provides a higher-level framework of guidance and principles which can be mapped

to a variety of prescriptive process templates. It is structured in both descriptive and

prescriptive methodologies. The descriptive component is called the MSF 4.0 metamodel,

which is a theoretical description of the SDLC best practices for creating SDLC

methodologies. Microsoft is of the opinion that organizations have diverging dynamics and

contrary priorities during their software development; some organizations need a responsive

and adaptable software development environment, while others need a standardized,

repeatable and more controlled environment. To fulfill these needs, Microsoft represents the

metamodel of MSF 4.0 in two prescriptive methodology templates that provide specific

process guidance, named

i. Microsoft Solutions Framework for Agile Software Development (MSF4ASD) and

ii. Microsoft Solutions Framework for Capability Maturity Model Integration Process

Improvement (MSF4CMMI).

Note that these software engineering processes can be modified and customize to the

preferences of organization, customer and project team.

Foundational Principles

The following are the eight foundational principles, which form the backbone for the other

models and disciplines of MSF:

http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Process_%28engineering%29
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Software_development_life_cycle
http://en.wikipedia.org/wiki/Best_practice
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Project_team
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Quality_Assurance
http://en.wikipedia.org/wiki/Prescription_and_description
http://en.wikipedia.org/wiki/Prescription_and_description
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Metamodeling
http://en.wikipedia.org/wiki/Software_development

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 43 www.journals.savap.org.pk

i. Foster open communication

ii. Work towards a shared vision

iii. Empower team members

iv. Establish clear accountability and shared responsibility

v. Focus on delivering business value

vi. Stay agile, expect change

vii. Invest in quality

viii. Learn from all experiences

MSF Models

MSF consists of two models(McConnel, 2004);

o the MSF team model and

o the MSF Governance Model

o MSF Team Model

This describes the role of various team members in a software development project.

The members of this team would be:

 Product Management: Mainly deals with customers and define project

requirements, also ensures customer expectations are met.

 Program Management: Maintains project development and delivery to the

customer

 Architecture: Responsible for solution design, making sure the solution design

optimally satisfies all needs and expectations

 Development: Develops according to the specifications.

 Test: Tests and assures product quality

 Release/Operations: Ensures smooth deployment and operations of the software

 User Experience: Supports issues of the users.

One person may be assigned to perform multiple roles. MSF also has suggestion on how to

combine responsibilities such as the developer should not be assigned to any other role.

MSF Governance Model

This describes the different stages in processing for a project. The MSF Governance Model

has five overlapping tracks of activity, each with a defined quality goal. These tracks of

activity define what needs to be accomplished and leave how they are accomplished to the

team selected methodology. For instance, these tracks can be small in scope and performed

quickly to be consistent with an Agile methodology, or can be serialized and elongated to be

consistent with a Waterfall methodology.

Tracks of activity:

 Envision - think about what needs to be accomplished and identify constraints

 Plan - plan and design a solution to meet the needs and expectations within those

constraints

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 44 www.journals.savap.org.pk

 Build - build the solution

 Stabilize - validate that the solution meets the needs and expectations... "synch

and stabilize"

 Deploy - deploy the solution

MSF Project Management Process

 Integrate planning and conduct change control,

 Define and manage the scope of the project,

 Prepare a budget and manage costs,

 Prepare and track schedules,

 Ensure that right resources are allocated to the project,

 Manage contracts and vendors and procure project resources,

 Facilitate team and external communications,

 Facilitate the risk management process,

 Document and monitor the team's quality management process(Whitten, 2003).

MSF for Agile Software Development methodology

The MSF for Agile Software Development (MSF4ASD) is intended to be a light weight,

iterative and adaptable process. The MSF4ASD uses the principles of the agile development

approach formulated by the Agile Alliance(McConnell, 2004). The MSF4ASD provides a

process guidance which focuses on the people and changes. It includes learning opportunities

by using iterations and evaluations in each iteration.

MSF for Capability Maturity Model Integration Process Improvement methodology

The MSF for Capability Maturity Model Integration Process Improvement (MSF4CMMI) has

more artifacts, more processes, more signoffs, more planning and is intended for projects that

require a higher degree of formality and ceremony (McConnell, 2004).

The MSF4CMMI is a formal methodology for software engineering. Capability Maturity

Model was created at the Software Engineering Institute of Carnegie Mellon University, and

is a process improvement approach that provides organizations with the essential elements of

continuous process improvement resulting in a reduced SDLC, improved ability to meet the

cost and schedule targets, building products of high quality. The MSF4CMMI has extended

the MSF4ASD guidance with additional formality, reviews, verification and audit. This

results in a Software Engineering Products that relies on process and conformance to process

rather than relying purely on trust and the ability of the individual team members. The

MSF4CMMI has more mandatory documents and reports than the agile version, and this

formal development process reduces risk on large software projects and provides a

measurable status.

DISCUSSION

There are significant advantages and disadvantages to the various methodologies, and the

best approach to solving a problem using software will often depend on the type of problem.

If the problem is well understood and a solution can be effectively planned out ahead of time,

the traditional approach may work the best. If, on the other hand, the problem is unique (at

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_Alliance
http://en.wikipedia.org/wiki/Evaluation
http://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Software_Engineering_Institute
http://en.wikipedia.org/wiki/Carnegie_Mellon_University
http://en.wikipedia.org/wiki/Systems_development_life-cycle
http://en.wikipedia.org/wiki/Software_review
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/w/index.php?title=Software_quality_audit&action=edit&redlink=1

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 45 www.journals.savap.org.pk

least to the development team) and the structure of the software solution cannot be easily

envisioned, then a more "extreme" incremental approach may work best.

A particular development team may also agree to programming environment details, such as

which integrated development environment is used, and one or more dominant programming

paradigms, programming style rules, or choice of specific software libraries or software

frameworks. These details are generally not dictated by the choice of model or general

methodology. The development team is left to choose the best methodology that is the best

for the system programming project they are developing. This is well supported by the

Microsoft solution framework (MSF) which does not force the developer to use a specific

methodology (Waterfall, Agile, etc) but lets them decide what methodology to use. This

article is presenting Microsoft solution Frame (MSF) as the best Software Engineering

Methodology for Developing System Software and should be adopted.

CONCLUSION

From the sections presentation of this paper, it is clear that the Microsoft solution framework

is the best methodology for system software development because from the last section, it

showcases that the MSF’s philosophy holds that there is no single structure or process that

optimally applies to the requirements and environments for all sorts of projects. Therefore

MSF supports multiple process approaches, so it can be adapted to support any project,

regardless of size or complexity. This flexibility means that it can support a wide degree of

variation in the implementation of software engineering processes while retaining a set of

core principles and mindsets. The Microsoft Solutions Framework Process Model consists of

series of short development cycles and iterations. This model embraces rapid iterative

development with continuous learning and refinement, due to progressive understanding of

the business and project of the stakeholders. Identifying requirements, product development,

and testing occur in overlapping iterations resulting in incremental completion to ensure a

flow of value of the project. Each iteration has a different focus and result in a stable portion

of the overall system. MSF also has suggestion on how to combine responsibilities such as

assigning the program developer to any other role.

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Programming_style
http://en.wikipedia.org/wiki/Software_libraries
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Project_stakeholder

Academic Research International Vol. 7(4) September 2016

__

Copyright © 2016 SAVAP International ISSN: 2223-9944, e ISSN: 2223-9553

www.savap.org.pk 46 www.journals.savap.org.pk

REFERENCES

[1]. Alan, M. D. (2004).Great Software Debates pp:125-128 Wiley-IEEE Computer

Society Press

[2]. Arcisphere technologies (2012). "Tutorial: The Software Development Life Cycle

(SDLC)". Retrieved 2014-08-13.

[3]. Barry, B. (1996). "A Spiral Model of Software Development and Enhancement". In:

ACM SIGSOFT Software Engineering Notes (ACM) 11(4):14-24, August 1986

[4]. Bell, T. E., & Thayer (1996). Software requirements: Are they really a problem?

Proceedings of the 2nd international conference on Software engineering. IEEE

Computer Society Press.

[5]. Edward, J. B.(2003). Concepts for Automating Systems Integration NIST 2003.

[6]. Hughey, D. (2009). "Comparing Traditional Systems Analysis and Design with Agile

Methodologies". University of Missouri - St. Louis. Retrieved 11 August 2014.

[7]. Kuhn, D.L. (1989). "Selecting and effectivelyusing a computer aided software

engineering tool". Annual Westinghouse computer symposium; 6-7 Nov 1989;

Pittsburgh, PA (USA); DOE Project.

[8]. McConnell, S. (2014)"7: Lifecycle Planning". Rapid Development. Redmond,

shington: Microsoft Press. p. 140.

[9]. McConnell, S. (2006). Software Estimation: Demystifying the Black Art. Microsoft

Press. ISBN 0-7356-0535-1.

[10]. McConnell, S. (2004). Code Complete, 2nd edition. Microsoft Press. ISBN 1- 55615-

484-4.

[11]. Royce, W. (2012). "Managing the Development of Large Software Systems".

Retrieved 11 August 2014.

[12]. Whitten, J. L., Lonnie, D. Bentley, Kevin, C., & Dittman. (2003). Systems Analysis

and Design Methods. 6th edition. ISBN 0-256-19906-X.

[13]. Whitten (2003). Rapid Development: Taming Wild Software Schedules. Microsoft

Press. ISBN 1-55615-900-5.

http://softwarelifecyclepros.com/wp-content/uploads/2012/05/Tutorial-Software-Development-LifeCycle-SDLC.pdf
http://softwarelifecyclepros.com/wp-content/uploads/2012/05/Tutorial-Software-Development-LifeCycle-SDLC.pdf
http://en.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
http://pdf.aminer.org/000/361/405/software_requirements_are_they_really_a_problem.pdf
http://www.mel.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
http://www.umsl.edu/~hugheyd/is6840/waterfall.html
http://www.umsl.edu/~hugheyd/is6840/waterfall.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7356-0535-1
http://en.wikipedia.org/wiki/Steve_McConnell
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-55615-484-4
http://en.wikipedia.org/wiki/Special:BookSources/1-55615-484-4
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://en.wikipedia.org/wiki/Whitten,_Jeffrey_L.
http://en.wikipedia.org/wiki/Lonnie_D._Bentley
http://en.wikipedia.org/wiki/Kevin_C._Dittman
http://en.wikipedia.org/wiki/Special:BookSources/025619906X
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-55615-900-5

