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ABSTRACT
We determined that for bounded operators A and B on a Hilbert space there holds
‘ |A —B|p A |A|pi1 -B |B |p71 for allp >2 , and if A and B are

for all p >3. We proved that if A and B are self-adjoint operators on B (H )
where AX =XB then

<!

additionally self-adjoint operators, then

<2 x|

m AX +XB|’ H A" AX +XxB|B|""

m AX +XB[ szm lax [ +xB[]|.

1 1 1
Similarly the inequality || A2X B?2|||< 5”' AX+XB ||| is known. We proved that for
self-adjoint normal contractions operators A and B then
(1 ~|a’ 2)X 2(1 -|B° 2) <[lx ~aXB*[[ hola. foranx e B(H).

Keywords: Csauchy-schwarz - selfadjoint operator - Norm Inequalities

PRELIMINARIES
Recently, the following perturbation norm inequality has been established in [2].

Theorem 1.1: If A and B are self-adjoint operators in B(H), then for all natural numbers n
and every unitarily invariant norm Il - lll,

(A= B)"" I 2*" Il A>™' = B> . (1)
This completely resolves the problem raised by Koplienko and others (see [14] and [15]) for

estimating A— B when A" —B" is given in a specified norm ideal.

Lemma 1.1: If self-adjoint A and B and an arbitrary X are in B(H), then for all non-negative
integers n and every unitarily invariant norm |ll- |l there holds the following chain inequality

HA"(A=-B)YB" IS A2"(A> = B)YB" " IlI< - <Ul A2"* — B2+ )],

This lemma itself was based on the following arithmetic-geometric mean inequality (see
[16] and [6]), which we will also need in the sequel.

Theorem 1.2: For arbitrary A, B and X in B(H), and every unitarily invariant norm [II- Il

2IMA* XB <IN AA* X + XBB*|ll.
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We will show that the inequality (1) also holds for all self adjoint derivations A X — X B
and for all real n = 0.

Let B(H) and /. denote respectively the space of all bounded and compact linear operators
acting on a separable, infinite-dimensional, complex Hilbert space H. Following [10], for an

arbitrary A€ B(H), let 5,(A)=s5,(A)2--- denote the singular values of A, i.e., the
eigenvalues of |Al= (A * A)l/2 exceeding the essential norm

Il A || =5, (A)= supo,,, (1AT), arranged in a non-increasing order, with their (necessarily
finite) multiplicities counted. If necessary, this sequence can always be made infinite by

adding S, (A)=s_(A) for missing/2. Note that for all bounded A we have

s, (A)=lim, s (A),while A€ {_ if and only if s_(A)=0. For the extension of
some standard singular value properties to bounded operators see [10] and [13].

Each symmetric gauge function ® on sequences (see [10] for definition) gives rise to

unitarily invariant norm on operator ideal {4 contained in £_ which is complete in the

topology induced by the norm Il 1llg . We will denote by symbol |l - lllany such norm and,
according to the basic singular value properties, all such norms satisfy the invariance property
WWUAV NI AT for all unitary U and V.

Specially well known among those norms are the Schatten p-norms defined as

Il A ” = (Z S; (A)") 1p for 1< p<oo and represent the norm on the associated ideal

14 » known as the Schatten p-classes. The Ky-Fan norms defined as

k
Il A ||k= cI)k (Si(A)) = Zi:l Si(A) , k=12,..., represent another interesting family of
unitarily invariant norms. The property saying that for all X € l. and Y€/l with
X 1l <Y I, for all k=1, we have X € £, with Il X lIKIIY Il is known as the Ky-Fan

dominance property. We note here that the requirement X € L. is just the traditional one,
and no harm will be done if we replace it by X € B(H ) . Indeed, a simple calculation shows
that if Y€l and Y ' 5(Xx)<> " 5,(v)for all k=1, then lim,__ s5,(Y)=0

implies that lim s (X)=0,ie, Xe/l_.

n—oo n
For a complete account of the theory of norm ideals, the reader is referred to [10], [9] and

[1].

NORM INEQUALITIES FOR SELF-ADJOINT

We would like to point out that the Ky-Fan dominance property holds for all bounded
operators.

Lemma 2.1: For A in B(H) and n=1,2,...,dim H we have
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n

Z<UAei,ei>

i=1

> (2)

Zn:si(A)= sup Zn:I<UAei,ei>I= sup
i=1 Y

1€ 538y =1 U.e.....e,

where supremum is taken over all unitary operators Uon H and all orthonormal systems
e,...ep in H .

Proof: The proof differs from [10] (which asserts the same for compact operators), in
showing that whenever s_(A)>0 and m =dim H, < (H, = E,,[s.(A),lAIllH,E,, is
a spectral measure associated to IAl ), then some right hand side sums can majorize
Z " s (A)—¢€ for all €>0 and n>m. But that will really do if for

i=1"1

0 =min{e/n,s_(A)} we choose {e,...e,} and {e,,,...e }to be respectively the
eigenvectors of |Alin H and any orthonormal system in E,, (s_(A)—0,s._(A))H, while U is
any unitary operator satisfying UVe, =e¢, for 1<i<n (V is from the polar decomposition

A=V|A]).
In the sequel, a function f satisfying f(a+b—t)= f(t) for all ze[a,b]will be called

symmetric on[a,b]. The following lemma generalizes to Lemma (1.1) and a famous Heinz
inequality from [5] (see also [12]).

Lemma 2.2: For self-adjoint A and B in B(H) and an arbitrary X € B(H), for all real
p =1 and all unitarily invariant normslll - lll, the function

f(s) =[] AX[B"" +[AI"" XB|B] I

is convex and symmetric on [0, p], non-increasing on [0, p/2] and non-decreasing on
[p/2,pl.

Proof: To show that f is symmetric, we will use the polar decomposition to represent A
and B as A=U|A| and B=V|B
and satisfying U* =V?* =1. Hence

, with U and V commuting with A and B respectively

f(p—s)=ll|A]"" UX|B

+]A

“XvIBT

=IlU (A W= f(s) 3

"UX|B|”" +|A|"” xV|B

Next, we show that

f(s;tjsfm;f(t) @

forall 1<s<t< p.Indeed, because of
(2 e

according to Theorem (1.2) and (3) we have that

Lax B +|A" xB|B™H|B

s+t AT - - -
Zf[Tj <I|A|™ (A" AX |B]"" +|A]"" xB|B[™)|B]
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+(A|™ Ax|B]"" +|A]"" xB|B|™)|B| "l

<A XB|B[™ +|A"" AX |B]"" Il

+1|A[™ AX [B]"™ +|A]"" XB|B| " 1= f(s)+ £ (1)
An immediate consequence of (4) is
flas+(-an)<af(s)+(1-a)f() (%)

for all rational0<a<1. For an arbitraryar e [0,1], we choose a sequence of rational

o, €[0,1] such thatlim, . &, = . Having that the operator valued function

n—oc0

g(s)=|A" AX|B]"" +|A]"" xB|B["”

is strongly, and therefore weakly continuous, we get

flas+1—a)t) =llw—lim g(a,s+(1—a, )0l
<liminf Il g(a,s +(1— ) ll=liminf f (e s+(1-a,)t)

<liminf (&, / (5)+(1-a,) (1) = @f () +(1-@) f (1), (©6)

Because Y llI<liminf, _lIlY, Il whenever Y, — Y weakly in B(H). This follows from the
well-known fact that

1Y llly,=sup{|tr(YZ)|: Z is of finite rank and Ill Z lll,, <1}

for conjugate gauge functions & and ®’. So (5) holds for all s,e [0, p] and for all &€ [0,1].
According to (3) and (6) f is convex and symmetric on[0, p], and therefore non-increasing
on [0, p/ 2] because

p—s—t t—

N
f(t)—f( P s+p_2s<p—s>]

<P o+ 25 p (- = ().
p—2s p—2s

forall 0<s<¢< p/2. Similarly, f(t)> f(s) forall p/2<s<t< p, and this ends the proof.
Theorem 2.1: If X and some self-adjoint A and B are in B(H), then
AX +XB|" i< 2”7 | x| |4 AX + XB|B|"" I
for all real p >3 and for all unitarily invariant norms Il - Il.
Proof: First, let us consider the particular case: A=B, X =X " and
- 1l= ||||K . We may also suppose”X || <1, with no loss of generality. An

application of Theorem (2.1) (for f(p) > f(1)) gives

277 A" AX + XAJA 0,
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> 272 |I|A|" AX + XAJA] I, +272 N AX Al + A XA,
and hence
277 1A AX + XA|A] 0,
2272 I|A” (AX + XA)+(AX + XA)| A" 1, (D)
For self-adjoint A"e B(H)letE, be its associated spectral measure and let

H,=E,(-s.(A),s_(A)). For m=dim HOH letA (A),...,A, (A") be the eigenvalues of A’
inH&-H,, arranged by its non-increasing modulus, with their multiplicities counted. If
m<oo, forall n>m let 4 (A)=s_(A) if s (A)e o, (A) and 1 (A)=-s_(A") otherwise.

ess

Combining the eigen-vectors of A” in HH-H, and elements of H, , we can choose a

sequence of orthonormal systems {el("),. . ,e,f”)} such that
n=1

lim[|Ae" — A (A)e"| -0 forall 1ISi<k  (8)

n—»e0

Specially, for A"+ AX + XA it follows from Lemma(2.1), (7) and (8) that

277 A" AX + XAJA 0,

k
>2"2 limsup » | <(| AP (AX + XA) +(AX + XA)| A |p-1)e;">,e;">> |

n—ee =]

k
=2""limsup ) IRe((AX + XA)e" | AV &)1

n—eo i=1

k
=2 limsup Y I A(A) I{AP™ €, e). 9)

n—oo i=1
Spectral representation and Jensen inequality give

™~ (p—-1)/2
AP e N (g n o= ([Tt du. o)
€, €, 0 'ue.("’ =\Jo ,uegn)

=(1AFem. ) A I
> XAe!” I Re(XAe" e ) 1"
= v I<(AX +XA)e™ e, > P2 1A (AP
for 1<i <k, and therefore
277 1A AX + XAJA 1,2 Zk: | A(A)IP=ll|AX + XA|" Il . (10)
o

Having the proof for our special case completed, for arbitrary self-adjoint A and B in B(H)
we will consider the following 2x2 self-adjoint operator matrices
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A O 0 X
C= and Y= |
0 B X 0

acting on H @ H . A straightforward calculation gives
lcrrtcy+ycic !

|0 A" AX + XBIB I
(IAI”""AX + XBIB 1" 0

and

ICY+YC|”:P(AX+XB)* ¥ 0 }

0 |(AX + XB) 1"
As noted in [129]
5, (CY +YC)=5,(CY +YC)=5,(AX + XB),
and also
S, (ICIPCYy+YCICIP =5, (CI""CY+YCICI'™)
=5, (A" AX + XBIBI"™").
Applying (10) to self-adjoint C and ¥ we get
27 IH|AP T AX + XA|A] I, = 2!"2% sacrtcy+rcicr™)

Jj=1

2k
>27'%" s7(CY +YC)

j=1
k

=Y s/ (AX + XB) =Il|AX + XB|' I, .
i=1

Now, by the Ky-Fan dominance property we conclude that this inequality also holds for all
unitarily invariant norms |II- Il

The preceding theorem can be reformulated as follows.
Theorem 2.2: If X and self-adjoint A and B are in B(H), then for all real 0<a<1/3
then
-1 -1 _ _
IA[A]" X + XB|B]"” "< 2" 11 X 1"l AX + XB i

for all unitarily invariant norms Il -IIl..

Proof: If we denote C=A|A|Ot_1 andD=D|B|DH, then C and D are bounded operators

satisfying| C I=l A [“and| D I=l B|* .Thereforel Al=| C1"*and A=CICI"*", and similarly

B=DIDI"*". An application of Theorem (2.1) to C, Dand 1/ gives the desired
conclusion.
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Next, we will show that for X =1the requirement P >3 can be relaxed to P >2,even for

arbitrary bounded operators A and B . So, we present the following perturbation inequality
for bounded operators.

Theorem 2.3: For A and B in B(H) and real P > 2 we have
A-B|" <2 MAIA -BIBI" I
for all unitarily invariant norms Il -|Il.

Proof: We will first treat a case with self-adjoint A and B and the Ky-Fan normsll-|I, . If we
define |A"= A-B,| L, (A)AAL(A) > and {e,...,e["}7_ to be as in the proof of Theorem
(2.1), then we similarly get

27 AlA” - BB,
> 2" I|A]" (A= B)+(A-B)[B|" I,

k
> 2" limsup > 1 A, (A=B) (A" e[, e”) (D
i=1

n—oo
p-1 (n) (n)
+<IBI e, e >).
Jensen inequality shows that

<IAI”1 () (n)> <IBI”1 (n) e.(”)>

1

>(1Ale”.e”)  +(1Ble, <">>

‘<Ae(”) (n)>‘ ‘<Be(") <n>>‘

> 27" (A= B)e!”, <">>‘ — 2> 1A (A-B)I""

forl <i<k as n—> oo, which together with (11) implies
2" NATAP =BIBIP I 2A-B| I, . (12)

For arbitrary A and B in B(H) we consider self-adjoint operator matrices

0 A 0 B
C=| . and D = . .
A" 0 B 0

A straightforward calculation gives

cici'-pipr

[ 0 AlAIP —BIBI”‘I}

AT IAT P =BT BT 0 (13)
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and we have to note that A" | A" I””' —=B" | B" I"”'= (Al A" =B B1”™") simply by the fact that
both sides of (13) are self-adjoint. According to [18]

We conclude
$,,,(C—=D)=S$,,(C~D)=s,(A-B),
and also
s, (CICI""' =DIDI"") =8, (CICI" =DIDI'™)
=s,(AlAI”" =BIBI’'™).
As (12) holds for all natural k, we get

k
27 HALAPT =BIBIIL,=Y " s,(AIAI”" —=BIBI"™).
i=1
k
=27 s (ClCciPt =DIDI"™)
i=1
k
>2r">" s/(C-D)=ll|A-B[ 1.
i=1

To conclude the proof, we just have to invoke the Ky-Fan dominance property for bounded
operators.

Similarly as it was done in Theorem (2.2), we can give the following reformulation for
the previous theorem.

Theorem 2.4: For A and B be in B(H)and all real 0 < <1/2 we have
MAIAI" =BIBIF "< 2" Il A= Bl

for all unitarily invariant norms Il -IIl..
Constants 2”~' and 2"“”' appearing in previous theorems are sharp, as the simple examples
A=B=X and A=-B=1 show. Comparing this with constant 1 obtained in [19], we see that
Theorems (2.1)-(2.4) extend the corresponding real and complex numbers inequalities to
norm inequalities for self-adjoint and bounded operators, just like in [19] did for the
difference of positive operators.

In order to complete the above theorems, we give the following.

Theorem 2.5: For A and B be in B(H), all real p>1 and 0 <a <1 there holds

@A+ (1-a)B|" I<llal AP +(1-a) | Bl

for all unitarily invariant normslll- Il

Proof: Instead of repeating a quite analogous proof, we will just present its essentially
different part, saying that for self-adjoint A and B we have

lal Al +(1—a)| BI”Il, > Zk:(a<lAlp ene)+(1-a)(IBV e,¢,)
i=1
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>3 (@l Acse)| +1-a)(Be.e)f)
i=1
> Zk:|<(aA+ (1-a)B)e,.c;) (14)

according to the convexity of the function ¢ —l#1” for p >1 and real 7. The right-hand side of

(14) is approximately |l |0{A+(1—0!)B|p Il, for suitably chosen{e,}, that allows us to end this

proof, in which, specifically, and the use of Lemma (2.1) has not been required.

MEANS INEQUALITIES FOR ELEMENTARY OPERATORS

We start with the basic Cauchy-Schwarz norm inequality for normal elementary operators.
The following theorem extends Theorem 2.5.1 of [8].

Theorem 3.1: If >~ C,C,<1Y " C,C,<1,) " D/D,<land ), D,D, <l

for some operator families {C,}” and {D,}"_, then also >, C,YD, e Cyy Whenever Y e

CHHH for some unitarily invariant norm |||||| , and moreover

Al as)

Proof: For arbitrary f and g in H a straightforward calculation gives

«gqmﬂfﬁ<zww

n=

<[ o,

) (Be)

—MKZQQf§< ccgg

See)d|Zoen)

AS]Y] 16)

=[] <[¥ll# el

from which we conclude that

Therefore, for all N =1,2,..., for Y € (, and for all W € B(H) we have

tr[Y[i C;WD:J J
n=1
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<[], <[[v], w

’

S CwD;
n=1

according to (16), from which we deduce that

<[rl, an

N
>.C,yD,
n=l1

1

If YeC, let Y =Z:=1Sn(y )<-,en> f, be a singular value decomposition for some

orthonormal systems {e,} and {f, } .For all kK >2 we introduce operators
Z=3 (5, (=5, (D" (e} f,
k )
V = Sk (Y)Zﬂ:I <" e" > fn + Zn=k+l S” (Y) <.’ e" > fn

We see that
k=1 n
Z=3 5,0 =5,,N(ve,) £,
n=l j=1
k
=3 (s, =5, (e, ,
j=1
k k
=D 5, (ve,) f, 5.0 (ve,) f, =Y =V

n=1 n=1
We can also note that s,(V)=---=5,(V)=s,(Y) due to orthogonality of the systems {e,} and
{f,}.That will allows us to conclude that for all Ky Fan k -norms we have

N N N
>.cyp, |l <|I>.c,zp,||+|>.cvD,
n=1 k n=1 n=l1
N
<|z|, +&|>.C,zD, (18)
n=l1 o
< (5,0 =5, DY (e, ) 1]+ VI (19)
j=1

<> n(s, (V) =5, (M) +ks, (N =5, =[¥]], 20)
n=1 n=1
with (18) following from (17) and (19) from (16).

Moreover, if Y is in (_then also 2::1 CYD e C_ Indeed, elementary operators

R,(Y)= ZnNzl C,YD, acting on C'*’ represent a bounded family, because |||RN Y )|||k < |||Y|||k
for all Ye C_ by (20). Also, for one dimensional operators f ® g and M >N we have

i D,f®C,g

n=N+1

1R, (f ® )= Ry (f ® ), <

1
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|< (f c”c;;jzg [i D:D”jzf

n=N+1 n=N+1

<3 |p:s

n=N+1

which =0 as M,N — oo . Therefore R, (Y)converge in C'’for all finite dimensional Y to

Cg

a compact operator. By the uniform boundedness principle the same is true for all Ye C*/,

due to its separability. So (15) holds for all Ky Fan k-norms, and we therefore invoke the Ky
Fan dominance property to conclude that (15) holds for all unitarily invariant norms, as
required.

In the sequel we will refer to a family {A }” in B(H) as square summable if

2las

an appeal to the resonance principle shows that Z; A'A, actually defines a bounded

n"'n?

|2 <oo for all f e H .Though this means just the weak convergence of z; AA

Hilbert space operator, and due to the monotonicity of its partial sums, the convergence is
moreover strong. For such families the following Cauchy-Schwarz inequality holds:

oo

Theorem 3.2: For a square summable families {A }> and {B,} _ of commuting normal

n=1

operators
o oo 12 . 12
> AXB,| < (ZA;A,,J X(ZB:B,,J : 21
n=1 n=1 n=1
for all X € B(H) and for all unitarily invariant norms |||||| It CHHH is separable and X € CHHH

then the left-hand side sum converges in the norm of this ideal.

Proof: First, we need a suitable factorization for Hilbert space operators A, and B, .Let

oo

A= (z::l A'A ) and B= (zn:l B'B.)", and let Pand Q denote respectively the orthogonal
projections on R(A)and R(B).If for a given fe H we have that Pf =lim

sequence {g,} in H ,then lim, ,_ A g, exists for all n>1and does not depend on the chosen
sequence. Indeed,

Ag, for some

k—oo

||Angk _Ané’/” S||A(gk —g,)|| %”Pf_Pf” =0

as k,l — oo ,and also ||Angk —Ang,” < ||A(gk —g,)” — 0as k —cowhenever lim, ., Ah = Pf
for some other sequence {4, } .Thus we can correctly introduce operators C,,n=1,2,..., by
C f=Ilim, Ag,,where {g,}is any sequence in H such that lim, , Ag, = Pf .Let us note
that due to our definition every C, vanishes on N(A), ie., C,=C,P,and also
CA=AC, =A,.

Moreover, Z; C,C,=P.Indeed, » ~C.CA’ :z; A'A =A% implies Z:::l C,CP=P,

n n n=l1 n n

which together with the fact that C (1-P)=0gives the desired conclusion. For all
m,n=1,2,...,C. and C, commute on R(A*)and N(A®),and so also on all of H .Thus

>~ m

{C,}~_, is a commuting family of normal contractions which realize the factorizations

CA=AC, =A, with Z::I C.C, =P, and which commute with the family {A, }*.Similarly
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we get a commuting family {D,} " of normal contractions which also commute with {B,}

n=1

and satisfy D, B=BD, =B, and Z; DD, =Q .One could easily derive the next explicit

n n

formula:C, =A A" =A'A , where A" denotes a (densely defined) Moore-Penrose
(generalized) inverse for A.

For Y =AXBe CHHH (there is nothing to prove in the opposite case), an application of
Theorem (3.1) gives

i A XB, i CYD,
n=1 n=1

<|I¥ll= (22)

o 1/2 o 1/2
(Z A:Anj X (Z BjBnJ
n=1 n=1

which proves the first part of theorem.

Finally, if CHHH is separable, then for all N =1,2,...,an application of the just proven part of

theorem combined with the arithmetic-geometric means inequality in [17] gives

- 12 - 12
(Z A,jAnj X (z B,jan
n=N n=N

i A XB |l =

n=N

- 12 - 112
[Z C:C, j AXB ( Y. DD,

n=N n=N

1
=3 (23)

(i c:c, j AXB + AXB ( i D'D, j
n=N

n=N

We see by (22) that {ZZN C.C }%_. and {ZZN D.D,}~_, represent bounded sequences of
self-adjoint operators which strongly converge to) asN —>o. As AXBe CHHH which is

separable, then the right-hand side of (23) tends to 0 as N —co by [8]. The conclusion
follows.

Corollary 3.1: For normal A and Bin B(H)and forall realr > 2.

H‘AX+XB|HS (1+|A J X[1+|B J o
2| 2 2

as well as

H‘X+AXB|HS (1+|A| J X[1+|B J 05)
2| 2 2

for all X € B(H) and for all unitarily invariant norms |||||| .
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Proof: {A,I}and{/, B} are families of normal commuting operators, and so for r=2 the

desired conclusion follows by Theorem (3.2) For r>2the mapping ¢ — £ s operator
monotone by a well-known Heinz theorem, and therefore this is an operator concave mapping

2

SERIELAN S
2 2 =
|8 Y (148 ) <1
2 2 =
[1+|A|2T [1+|B|2T [1+|A’J1 (1+|B’J1
b% < X ,
2 2 2 2

which completes the proof.

(see [11]). Specifically, # < (ﬂ) , from which we obtain

and similarly

Therefore

Corollary 3.2: For normal A and B in B(H) the inequality

1
r

|A X +X|B
2

<[lx|”

mAX ;r XB 26)

holds for all real » > 2 ,for all unitarily invariant norms |||||| and forall X e CHHH
Proof: By Corollary (3.1), forall >0,
A Y (1Bl Y
<t X
2 2

<ot | M o L

by [7], because 2 <1.Therefore, the arithmetic-geometric mean inequality implies

tAX + XtB

AX + XB
2

2

and therefore

AX + XB
2
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2t
-2 { A" x +x|Bf J
— (27)
As the right-hand side equals|||X |||1_7 5 , which attains its minimum for
Al x +x B

, the conclusion follows.

Theorem 3.3: For normal contractions A and B the inequality

m(l —A'AYX(I-B'B)

<[|x - axa||, (28)
holds for all X € B(H) and for all unitarily invariant norms |||||| .

Proof: First, we note that s—lim, ,_ A"(/ —A*A)% =0 .Indeed, by a spectral theorem, for
every f € H there is a positive, finite Borel measure x concentrated on D={ze C: |z| <1}
such that

LR
Aa-aa) ] =

" (1- |2 Jd s, (2)

whence the desired conclusion follows by Lebesgue's dominating convergence theorem.
Therefore

=

w—lim(I1-A"A)' (X —A"XB")(1-B'B)’ =(1-A'A)’ X (1-B'B)

n—ye0

So by Theorem (2.3.2) we get

m(l ~A'A) X (1-BB)

[N

=(lim (1-A4"A)* (X —A"XB")(1-B'B)

n—eo

=S (1-A"A) A% (x - AXB) B* (1 - BBHH

k=0

1

( (a-|A)|Al j (X — AXB)
k=0

1

IbEREH|

=||r - P)(x - AxB)(1 - 0)||<|| X - AxB|| . (29)
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where P and Q are the orthogonal projections on ker(/ — A" A) and ker(I — B*B) respectively.

This concludes the proof.

MAIN RESULTS
Theorem 4.1:
If A and B are self-adjont operators and an arbitrary X are in B(H ) where AX =XB
then
m AX +XB[ szm Ax [ +|xB[
Proof:

m lAX +XB[

:H‘(AX +XB)(AX +XB )"‘H:H‘(Ax +XB)(AX " +X B")

=H‘AXA X "+AXX 'B"+XBA'X *+XBX 'B”

< H\AXA ‘X *+XBX "B *m+mAXX "‘B* +XBA'X m

- m lax [ +xB |2H‘+H‘XBX ‘B raxax |

:m ax [ +xB[

+m IXB[ +|AX [

=2|| |ax [ +[x[

Theorem 4.2: For self-adjoint normal contraction operators A and B

A'DX *(I -|B”

Jor- )

holds forall X e B(H) .

< H\X —A'XB"

Proof: Similarly as in the proof of theorem (2.3.5) forS —limA ™ (

n—oo

Ww —lim(I—A*

-

1 1
2 2
_ )2X(I—B* )2

A*

We get

m(l —\A*f)x 2(1 —\B*f)

/s

2); (x —A*”XB*”)(I—

B*

2

1
1 —‘A*‘z)z =0 , therefore

1
2)5
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n—oo

1

(I _‘A*r)z [;A (A'XB*)B" J(,_‘B*‘z)i

DR

:m(l —P")(X —A'XB")U —Q*)m

S

< B >ka

< >

k=0

(x —A*XB*)(

< xxn

Hence

m(l —\A*\Z)X : (1 —\B*f)

lim([ —\A*\Z); (x -a"xB” )(1 —\B"\Z)E

p—

1

1
/ _‘B*‘z)jz

< -axs ]
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