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ABSTRACT 

This paper is concerned with the use of Taylor-Maclaurin series in the inelastic 

buckling analysis of a thin, flat, rectangular, isotropic plate bounded by four clamped 

edges. In the problem definition, the plate is subjected to uniform uniaxial in-plane 

compression. The inelastic buckling behavior of the plate was obtained by adopting 
the deformation plasticity theory using Stowell’s approach. The total potential energy 

functional was minimized and the inelastic buckling load was obtained using a work 

technique. The Taylor-Maclaurin series was truncated at the fifth term which 

satisfied the boundary conditions and resulted to a particular displacement function    

of the CCCC plate. The displacement function was substituted in the inelastic 

buckling equation. The critical buckling load was found to be a function of the plate 

buckling coefficient, and values of the plate buckling coefficient were calculated for 

aspect ratios ranging from 0.1 to 2.0 at intervals of 0.1. The results were compared 

with the elastic buckling values and the minimum and maximum percentage 

differences were −0.366% and −7.447% respectively. These differences show that 

the technique from the present study is a good approximate method for analyzing the 

inelastic buckling of CCCC plates.   

Keywords: Boundary conditions, plastic buckling, rectangular plates, shape function, 

Stowell’s theory, Taylor-Maclaurin series 

INTRODUCTION 

Buckling may be described as a condition which occurs when the equilibrium state of a 
structural member changes from stable to neutral under the action of a critical load. Thin 

rectangular plate elements used in engineering structures are often subjected to buckling 

through the action of axial compressive loads. Hence, it is important for the critical buckling 

loads and stresses to be accurately predicted. Buckling of plates may be classified into elastic 

buckling and inelastic (or plastic) buckling. In elastic buckling, the analysis is based on 

Hooke’s law where it is assumed that the proportional limit of the plate material is greater 

than the buckling stress. In inelastic buckling, however, Hooke’s law is inapplicable because 

of the nonlinear stress-strain relationship, and this occurs when the plate is stressed beyond 

the proportional limit. In many real problems, buckling may occur in the inelastic range. A 

number of plasticity theories have been propounded to consider the inelastic behavior, but the 

two main theories of plasticity used in the inelastic buckling analysis of plates are the 

incremental/flow theory and the deformation theory. The incremental theory was pioneered 

by Handelman and Prager (1948) while the deformation theory was developed by Ilyushin 

(1947). The deformation theory of plasticity is often preferred by researchers in the inelastic 
buckling of plates because its solutions are in closer agreement with experimental values, 

despite its weak mathematical formulation.   
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Inelastic buckling analyses of thin rectangular plates for various loading and boundary 

conditions have been investigated by researchers (Stowell, 1948; Iyengar, 1988; Shen, 1990; 

Wang, et al., 2004). These studies used both the deformation and incremental theories of 

plasticity. In terms of analytical approach, the use of numerical methods and energy methods 
seem to be predominant. It may be noted that no matter the method or plasticity theory used, 

most researchers applied Fourier series or trigonometric series as the displacement function 
of the deformed plate. To the best of the researchers’ knowledge, none of the existing 

solutions from past works used the Taylor-Maclaurin series in formulating the displacement 
function.    

Very few investigators have used Taylor-Maclaurin series in analyzing CCCC thin plate 

problems. Ibearugulem and Ezeh (2013) used the Taylor-Maclaurin series in formulating the 

shape function for the elastic stability of axially compressed CCCC thin rectangular plates. 

Njoku, et al. (2013) analyzed the free vibration of thin rectangular isotropic CCCC plates in 

the Galerkin’s method using Taylor’s series. Since the use of Taylor-Maclaurin series 
displacement function has not received much attention in literature, this present study 

presents a solution to the inelastic buckling of a thin, rectangular, isotropic plate for the 
CCCC boundary conditions. The governing equation was based on Stowell’s approach and a 

work technique.  The results were presented and compared with the elastic buckling values.  

PROBLEM DEFINITION  

Consider a flat, homogenous, rectangular, isotropic plate and assume that the thickness of the 

plate is small as compared to the other characteristic dimensions in the x- and y-directions. 

The thin rectangular plate is clamped along the four edges and is subjected to uniform         

in-plane compressive loads in the x-direction as shown in Figure 1.  

  

 

 

 

 

 

 

 

 

Figure 1. CCCC plate subjected to uniform in-plane compression in Cartesian coordinates 

To facilitate the solution of the problem, the Cartesian coordinates are non-dimensionalized 
and expressed as  

� = �
� ; 		� = 	


 																																																																																																																															(1) 

The deflection and the slope varnish along the clamped edges. Thus, the boundary conditions 

of the CCCC plate are 

�(� = 0) = 0;		���(� = 0) = 0																																																																																													(2) 
�(� = 1) = 0;		���(� = 1) = 0																																																																																													(3) 
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�(� = 0) = 0;		���(� = 0) = 0																																																																																													(4) 

�(� = 1) = 0;		���(� = 1) = 0																																																																																													(5) 

Where ��� and  ��� are the first derivatives of the displacement functions in the R and Q 

directions respectively. 

FORMULATIONS 

Inelastic Governing Equation  

Stowell (1948) derived the differential equation of equilibrium for the inelastic buckling of a 

thin, flat, rectangular plate subjected to uniform axial compression in the x-axis as   

�14 + 3
4
��
��

� ���
��� + 2 ���

����	� + ���
�	� =  !"

#$
���
��� 																																																																			(6) 

Where Et is the tangent modulus, Es is the secant modulus, w is the displacement function in 

the transverse direction, t is the thickness of the plate, #$	is flexural rigidity of the plate in the 

inelastic region and !"	is the buckling stress. The inelastic flexural rigidity, #$ and the 
buckling load, Nx are respectively expressed as  

#$ = �� '
9 																																																																																																																																									 (7) 

*" =  !"																																																																																																																																										(8)									 
Expressing Equation (6) in terms of non-dimensional coordinates with respect to Equation 

(8), we have 

1
,� -.

�	/	'�		01
02
3 ���
��� + 2

,�
���

������ + ���
��� − *"
�

#$,� 	�
��

��� = 0																																																		(9) 
, = � 
4 																																																																																																																																											(10)  

In Equations (9) and (10), p is the aspect ratio, a is the plate dimension in the R-direction and 

b is the plate dimension in the Q-direction. 

Eziefula (2013) applied a technique based on Ibearugbulem, et al. (2013) where Equation (9) 
was transformed using the principle of conservation of work in a static continuum. He made 

Nx the subject of formula and obtained 

*" =
#$,� 5 5 6 1

,� -.
�	/'

�		
01023

7��7
��� + 2

,�
7��7

������ + 7��7
��� 8.

9
.
9 ����	


� 5 5 7 ��7
��� 	����.

9
.
9

																								 (11) 

Where 

� = :7																																																																																																																																											(12) 
In Equation (12), H is the buckling curve expression and A is the amplitude of the 
displacement function. 

Taylor-Maclaurin Series Displacement Function 

Ibearugbulem (2012) expanded the displacement function using Taylor-Maclaurin series and 

he assumed the displacement function to be continuous and differentiable. He truncated the 

infinite power series at m = n = 4 and obtained 
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� = ; 	;<=>?
�

?@9

�

=@9
�=�?																																																																																																											(13) 

The boundary conditions in Equations (2), (3), (4) and (5) are now applied in Equation (13). 
Substituting Equations (2) and (4) into Equation (13) gave 

<9 =	 <. = 0;	>9	 =	>.	 = 0 

Substituting Equation (3) into Equation (13) and solving the two resulting simultaneous 

equations gave 

<�	 = 	 <�; 	<'	 = 	−2<�	 
Again, substituting Equation (5) into Equation (13) and solving the simultaneous equations 

gave 

>�	 =	>�; 	>'	 =	−2>�	 
Substituting the values of J0, J1, J2, J3, J4, K0, K1, K2, K3 and K4 into Equation (13) gave the 
unique displacement function of the CCCC plate as 

� = J�K�C(�� − 2�' + ��)(�� − 2�' + ��)D																																																																						(14) 
From Equations (12), (13) and (14), we have 

: = J�K�																																																																																																																																											(15) 
7 = (�� − 2�' + ��)(�� − 2�' + ��)																																																																																		(16) 
Application of a Work Principle 

Partial derivatives of Equation (16) with respect to R, Q or both R and Q gave 

7��7
��� = 24(�� − 2�' + ��)(�� − 2�' + ��)�																																																																		(17) 

7��7
��� = 24(�� − 2�' + ��)�(�� − 2�' + ��)																																																																		(18) 

7 ��7
������ = 4(1 − 6� + 6��)(1 − 6� + 6��)(�� − 2�' + ��)(�� − 2�' + ��)		(19) 

7��7
��� = 2(1 − 6� + 6��)(�� − 2�' + ��)(�� − 2�' + ��)�																																						(20) 

Equations (17), (18), (19) and (20) were expanded and integrated partially with respect to R 

and Q respectively in a closed domain. The results were 

EE7
.

9

.

9

��7
��� ���� = 0.0012698																																																																																																(21) 
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EE7
.

9

.

9

��7
��� ���� = 0.0012698																																																																																															(22) 

EE27
.

9

.

9

��7
������ ���� = 0.00072562																																																																																			(23) 

EE7
.

9

.

9

��7
��� ���� = 0.000030234																																																																																										(24) 

Substituting Equations (21), (22), (23) and (24) into Equation (11) gave 

*" =
#$

� 60.0012698,� -.

�	/	'�		01023 + 0.00072562 + 0.0012698,�8
0.000030234 																																		(25) 

The inelastic buckling equation of the plate may be expressed in the form 

NH 	= I�#$

� J																																																																																																																																				(26) 

k is the plate buckling coefficient. Expressing Equation (25) in form Equation (26) gave 

	*" = I�#$

� 64.25540,� � 1

	4		 +
3
4	��

��
� + 	2.43172+ 4.25540,�8																																								(27) 

Where 

J = 64.25540,� � 1
	4		 +

3
4	��

��
� + 	2.43172 + 4.25540,�8 																																																					 (28) 

RESULTS AND DISCUSSION 

The results from this study gave the equation of critical plastic buckling load as 

NH,KL = I�#$

� 	64.25540,� � 1

	4		 +
3
4	��

��
� + 	2.43172+ 4.25540,�8																																				(29) 

Ibearugbulem (2012) gave the solution for the elastic stability of a CCCC thin rectangular flat 
plate as 

NH,KL = 	I
�#

� 	64.255,� + 	2.428 + 4.255,�8																																																																												 (30) 

Both solutions are upper bound, approximate solutions based on Taylor-Maclaurin series 

displacement function. In the present solution using Stowell’s approach, #$ is used instead of 

D, where D is the elastic flexural rigidity of the plate. It may be noted that #$ is a function of 

Es while D is a function of Young’s modulus, E. In calculating the values of Es and Et, a 

comprehensive knowledge of the stress-strain curve of the plate material in the inelastic range 

is required. The factor Et/Es is equal to unity in elastic buckling but its value is always less 

than one in inelastic buckling. In this paper, the numerical value of Et/Es is taken to be equal 

to 0.9. Values of the plate buckling coefficient from the present study and Ibearugbulem 

(2012) for different aspect ratios using ��/�� = 0.9 are shown in Table 1. 
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Table 1. Values of k for uniaxially compressed CCCC thin rectangular plate 

p = a/b 
k from Present 

Study 

k from Ibearugbulem 

(2012) 
Percentage Difference 

0.1 396.099 427.970 −7.447 

0.2 101.008 108.972 −7.308 

0.3 46.551 50.089 −7.063 

0.4 27.714 29.703 −6.696 

0.5 19.241 20.512 −6.196 

0.6 14.898 15.779 −5.583 

0.7 12.550 13.197 −4.902 

0.8 11.306 11.800 −4.186 

0.9 10.738 11.128 −3.505 

1.0 10.623 10.938 −2.880 

1.1 10.834 11.093 −2.335 

1.2 11.293 11.510 −1.885 

1.3 11.952 12.137 −1.524 

1.4 12.781 12.939 −1.221 

1.5 13.756 13.893 −0.986 

1.6 14.862 14.983 −0.808 

1.7 16.092 16.197 −0.648 

1.8 17.434 17.527 −0.531 

1.9 18.884 18.967 −0.438 

2.0 20.437 20.512 −0.366 

From Table 1, the average percentage difference is −3.325%. Comparing the solutions from 

the present study with those from Ibearugbulem (2012), it is noted that the closeness of the 
two solutions improves as the aspect ratio increases from 0.1 to 2.0. Solutions from 

Ibearugbulem compared favourably with Iyengar (1988) and the average percentage 
difference was 3.538% for aspect ratios 0.1 to 1.0 at increments of 0.1 as cited in 

Ibearugbulem (2012). These differences are quite acceptable in statistics as being close. 

Therefore, the technique from the present study is a good approximate method for estimating 

the displacement function in the inelastic buckling analysis of thin rectangular CCCC plates. 
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