
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 232
Copyright © 2013 SAVAP International

www.savap.org.pk

OPENFLOW VIRTUALIZATION: A DECLARACTIVE

INFRASTRUCTURE OPTIMIZATION SCHEME FOR HIGH

PERFORMANCE COMPUTING

Christiana. C. Okezie 1, Okafor Kennedy. C 2, Udeze Chidiebele. C 3

1
Electronics andComputer Engineering Department, Nnamdi Azikiwe University, Awka,

2, 3
R&D

Department, Electronics Development Institute, Awka.

NIGERIA.

1
christanaobioma@yahoo.com,

2
arissyncline@yahoo.com,

3
udezechidi@yahoo.com

ABSTRACT

Contempriarily, networks have become a critical component of all infrastructures in

High Performance Computing (HPC) environments. With the wide acceptance of

cloud computing, 4G long term eveolution (LTE), Smart grid integrated iTs and other

internetworking applications, a highly optimized scheme is recommended. This

scheme will give network operators more control of their infrastructure, allowing

customization and optimization, thereby reducing overall capital and operational

costs. This paper presents Openflow virtualization in layer 2 switch which serves as a

uniform vendor interface between control and data planes. The operating system

logically constructs and presents a logical map of the entire network to services or

control applications implemented on top of it, hence slicing and virtualizing the

underlying network. With this, a Synthesis Service Differenciation (SSD) model was

introduced by writing internetwork operating system (IOS) scripts that manipulates

the logical map of the switch slice with IP address ranges. The result is an increased

ability to quickly introduce new services and to adapt the network faster when service

changes are required in HPCs.

Keywords: Openflow, HPC, 4G, Infrastructures, LTE, Virtualization, Vendors, SSD,

IOS, HPCs

INTRODUCTION

According to the website in [1], OpenFlow is a communications protocol that gives access to

the forwarding plane of a network switch or router over the network. Recent technical

advances have moved a large proportion of locally hosted enterprise services from private, in-

house machine rooms to shared datacenters maintained by third party providers. This shift

was enabled by the introduction of cloud computing and infrastructure virtualization [2].

OpenFlow which is an instance of software-defined networking (SDN) gives access deep

within the network forwarding plane while providing a common, simple, API for network-
device control [3].

We believe that just as vendors design switches, routers and other products for specific

markets, OpenFlow technology seeks to break the propriatory constraints attached to devices

by the vendors, hence creating an open platform for third party integrations. OpenFlow

provides network administrators with a set of elements that allows them to define flows and

to define the path that they will follow without disturbing the existing traffic. It also provides

methods to define policies to find automatically paths that accomplish certain characteristics,

like having higher band width, suffering less latency, reducing the number of hops and

reducing the required energy that needs traffic to reach its destination [4]. With OpenFlow

virtualization, it becomes possible to create an open standard that can be implemented in
ethernet switches, routers and wireless access points (AP) regardless of the vendor firmwares.

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

233

Since OpenFlow is a relatively new technology currently under deployment, several research

issues that should be solved among others are robustness, ease of management, performance

and scalability [5]. It is practicable to delegate the management of network segment/s to

experts, as if it was a completely independent network. OpenFlow switches are deployed into

UNIX/Linux platforms and available in ethernet switches/routers from different vendors [5].

Following the complexity and resource requirements of today’s data center networks, this

paper presents OpenFlow Virtualization with Synthesis Service Differenciation (SSD) model

to enable new services and integrations to adapt to any network faster when service changes

in high computation envirnments.

A BRIEF OVERVIEW ON OPENFLOW HARDWARE ABSTRACTION

According to [6], the draft document describes the OpenFlow Hardware Abstraction API as a
programming interface inside the OpenFlow switch software architecture. The interface

provides isolation between vendor specific hardware details and OpenFlow switch
implementations. It abstracts the physical hardware port to an OpenFlow port type and the

hardware packet processing tables to show manipulation operations. Figure 1 illustrates how

the OpenFlow Hardware Abstraction API fits into the software architecture of an OpenFlow

switch.

The purpose of the OpenFlow HW Abstraction API is to allow the software components of

an OpenFlow Switch to control hardware Datapath and hardware port interfaces. It provides
an extensible mechanism to expose vendor specific hardware features to the OpenFlow

controller when such exposure is necessary or useful. Some abstracted components include
[6]:

I. Port Interface: A conduit through which packets may be sent or received. Typically

associated to a physical port, but some abstractions may group physical ports (e.g.

trunking) or associate multiple interfaces to a physical port (e.g., each with a

different VLAN). An interface may have additional state such as \up/down" or

spanning tree state. In addition, an interface may maintain statistics on its use.

II. Flow Table and Datapath: A Flow Table is a prioritized list of flow descriptions,

each with associated actions and may be implemented in hardware or in software.

There may be multiple Flow Tables in a switch (for instance, one in hardware, one

in software). Each Flow Table is associated with a Datapath. The Datapath accepts

packets to be processed according to the rules in its Flow Table. It updates the
packets and forwards them according to the actions of the matching flow entry.

Packets may arrive from a port interface on the switch or from the OpenFlow
protocol stack.

III. OpenFlow Protocol Stack: Makes connection with a Controller and passes off

commands as they arrive.

IV. OpenFlow Datapath: The main controlling component for OpenFlow. It usually

maintains a software flow table and processes packets from the datapath. It

coordinates the multiple flow tables (software and hardware) in the system. It

handles packets arriving from the hardware to be processed by the software flow

table or forwarded to the controller.

V. Port Manager: Implements the needed functionality to expose a port from the

hardware (physical or otherwise) to OpenFlow. May provide some control or expose

port state (enabled, link state, spanning tree state, etc.) Allows access to port

statistics. Packet data flows from the hardware through the port manager to the

OpenFlow datapath.

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 234
Copyright © 2013 SAVAP International

www.savap.org.pk

VI. Hardware Table Manager: Implements the needed functionality to expose hardware

packet processing tables to OpenFlow. It Converts OpenFlow flow insertion

messages into hardware specific table entries and allows access to flow table and
per-flow statistics.

The driver structure in the OS kernel supports communication from one module to another during

the initialization phase

The OpenFlow HW Abstraction API has the following goals:

I. Protect Proprietary Code: Vendor proprietary code may be written to support this
API and released as a binary to protect the intellectual property of the vendor.

II. Insulate OpenFlow Switch Code: Allow the OpenFlow Switch software components

to be written independent of the underlying hardware. This will facilitate porting the
OpenFlow Switch code to new hardware.

III. Insulate Vendor Code: When a new version of OpenFlow is released, this API
should permit the reuse of existing HW drivers which support this API. This is

particularly important if the HW driver is released as a binary object.

IV. Flexible Deployments: In environments such as Linux with a user/kernel space
distinction, the API should function on either side of the division or across it. More

generally, the API should not impede the creation of library to support the
functionality.

Figure 1. High Level OpenFlow Switch Software Architecture [6]

Figure 2. An OpenFlow switch communication with a controller over a secure connection using the

OpenFlow protocol [7].

An OpenFlow Switch consists of a flow table, which performs packet lookup and forwarding,

and a secure channel to an external controller (Figure 2). The controller manages the switch

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

235

over the secure channel using the OpenFlow. The Flow table comprises of the header fields,

actions and counters. Our proposed OpenFlow Virtualization with Synthesis Service

Differentiation (SSD) model will leverage on the Openflow hardware abstraction to

implement SSD. Figure 3i & 3ii shows a closed and openflow Proprietary switch models.

Figure 3i. A closed/ Proprietary switch model

Figure 3ii. OpenFlow/SDN switch model

 -Features

 - OS

- Speacilized Packet

forwading
Hardware

-Features
- OS

- Speacilized Packet

forwading

Hardware

-Features
- OS

- Speacilized Packet

forwading

Hardware

-Features

- OS

- Speacilized Packet

forwading

Hardware

Network of

Vertically

Integrated Closed,

proprietary Switch

Data Plane

 OS Management Plane

Control Plane
Isolates and handles

network

topology,ACLS,Forwarding

and Routing,QoS,Link

Link

switching,forwarding

and routing

Telnet,SSH,SNMP,SYSLOG,
HTTP,FTP/TFTP

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 236
Copyright © 2013 SAVAP International

www.savap.org.pk

In figure 3ii, the model separates between data plane and control planes, opens interface

between control and data plane while the network control and management is handled by the

OS kernel.

RELATED WORKS

Though OpenFlow technlogy is relatively new, various works were reviewed to allow this
research make contribution to knowledge. In this work, OpenFlow Virtualization draws

inspiration from the works in [5], [15], [16], and [17]. The works advocates controlling
network switches from a separate, logically centralized system. The paper in [5] is by far the

most related research work. The work outlined the shortcomings of current START
architecture [18] viz: Access control is too coarse-grained, hosts cannot be dynamically

remapped to different portions of the network, and monitoring is not continuous. The authors
in [5] proposed an architecture that has the following salient features as address issues in

[18]: a policy specification framework, distributed network monitoring, and the ability to take

specific actions using programmable switches. The works in [2], [13], [14] discused

OpenFlow as a cost reduction agent for computing infrastrucuture while the paper in [4]

presented OpenFlow Switching Performance in the context of testbed deployment,

comparision of performance with layer-2 Ethernet Switching technology and with layer-3 IP

Routing technology. The work submits that OpenFlow can do the same functions as

switching and routing with the same and, in some situations, better performance. OpenFlow

devices identify traffic flows following forwarding rules established by network managers

and it also provides a flow-based network virtualization framework to avoid interferences

among different flows [5].

However, this paper discusses Synthesis Service Differentiation (SSD) approach for priority
tagging to devices based on thier priority index in HPCs and carries out an evalutaion on

Openflow virtualization experiments. Figure 5 shows our SSD DCN Architecture.

Figure 5. SSD DCN Architecture

PVC

PVC PVC

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

237

METHODOLOGY

This work adopts two approaches to analyze Openflow virtualization and performance

characteristics of Synthesis Service Differenciation (SSD) in HPCs. Firstly, our SSD model
and computation was done to assign priority tags to end devices using comon IP VLAN

design mapping and in the second approach, we focused on openflow switch data path and

analyze the OpenFlow implementation in Linux based PCs. Forwarding throughput and

packet latency is analysed and compared with layer-2 Ethernet switching under loaded,

underloaded and overloaded conditions with different traffic patterns. In this work, the first

approach will only be addressed while future work will address the later.

Experimental Setup

At Kswitch Labs, we have several devices and softwares in which we can test the

experiments. For the completion of the work, we are going to use one desktop PCs, one

laptop and one traffic generator. The following components were deployed for OpenFlow

virtualization analysis:

Desktop PC

• CPU: Intel Core2 Duo E6750 2.66 Ghz

• RAM: 4 GB 2066MHz

• HARD DISK:80 GB

• NIC: 2 x Intel PRO/1000 PT dual port 1 Gbps PCIx-Express

• Operating System: Linux Ubuntu 10.10 64 bit. Kernel 2.6.27

Mobile Laptop

• CPU: Intel Core2 Duo P8400 2,6 Ghz

• RAM: 8 GB 800MHz

• HARD DISk: 500 GB

• NIC: Realtek RTL8168 Gigabit Ethernet

• Operating System: Linux Ubuntu 10.10 64 bit. Kernel 2.6.27

Agilent N2X traffic generator

• Modular chassis: up to 4 modules

• Used modules: E7919A 1000Base-X GBIC-RJ45 and E7919A 1000Base-

• N2X Packets 6.4 System Release traffic analyzer software

Packet Tracer 5.3 for IP VLAN mapping (Priority tagging)

 Figure 4i. Testbed environment for SSD with Packet tracer 5.3. (Senario-1)

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 238
Copyright © 2013 SAVAP International

www.savap.org.pk

Figure 4ii. Testbed environment for Ageilent N2X router (Senario-2)

The experimental setup for our second approach is shown in Figure 4ii. The test machine

(TM) is a standard PC mounted where OpenFlow switching application was installed for

initial contact. The configuration of the PC is an Intel Core2 Duo E6750 2.66 Ghz with

RAM: 4 GB 2066MHz, 80 GB HARD DISK. Network connectivity is provided by two Intel

PRO/1000 PT dual port1 Gbit/s NICs plugged into PCI-Express-x bus running Operating

System-. Linux Ubuntu 10.10 64 bit Kernel 2.6.27. The test is to be based on synthetic traffic

generated using an Agilent N2X router tester [8] equipped with Gigabit Ethernet modules.

The use of the router tester ensures both bottleneckfree traffic generation and high

measurement precision not achievable with standard PCs and software traffic generators. All

links use UTP cat 5e cabling. Switching tests use directly the Linux kernel implementation

while bridge-utils software suite is used to create a virtual switch and to connect the test
interfaces to it. Routing is performed using the IP forwarding engine available in the Linux

kernel. We present the results and analysis for this senario in our future work.

Figure 5. A VLAN IP Mapping simulation for SSD with Packet tracer 5.3. (Senario-1)

SIMULATION AND PROCESS MODEL RESULTS (Senario-1)

Openflow Ssd Vlan Ip Mapping

Basically, twelve VLAN mappings (for site a, site B and site C) were used for the Synthesis

service differentiation. VLAN pririoity tagging for different services and traffic was realised

via IOS scripting on our OpenFlow switch. By using variable subnet mask concept, (VLSM)

[9], the corresponding valid SSD real IP ranges were computed with the SSD priority tags (

1, 10,15, 20, 30, 40, 50, 60, 70, 80, 90,100) matched with the port interfaces in the OF-

switch. Figure 5 shows flow table ingress in OpenFlow switch model as discussed in [10]

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

239

Figure 5. Flow table Ingress in OpenFlow Switch Model [10]

Figure 6. An OpenFlow Virtualized Switch model [10]

Analysis of Synthesis Service Differentiation (Ssd)

 A model of an OpenFlow Virtualized switch model is shown in figure 6. OpenFlow

Virtualization and SSD offer high bandwidth optimization with low latency and consequent
high through put in a HPC link. In the context of senario-1, this paper used a three source star

topology Virtual Logical Aggreation Network (VLAN) in the model to define SSD for
various traffic flows. The three source topolgy was mapped into twelve VLANs to be

assigned to end system/workgroups locations as shown in figure 5. The simulation deals with
twelve different cases for three different sites. the first case is devoted to site A (VLAN 1,

VLAN 15, and VLAN 20), the second case is devoted to site B in which nodes are mapped
to VLAN 30,VLAN 40,VLAN 50, and VLAN 60. The third case is devoted to site C (VLAN

70, VLAN 80, VLAN 90, and VLAN 100). In all cases, the SSD which defines VLAN
mapping is done by port and MAC in the Openflow switch (OF-switch) as in figure 5.

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 240
Copyright © 2013 SAVAP International

www.savap.org.pk

Starting from VLAN 1 to VLAN 100 for site A, site B and site C, the priority tags were

assigned for resource allocation and traffic management with due consideration to the

OpenFlow virtualization on the OpenFlow switch. Also, only SVLAN 70 was assigned to the

DCN servers. In the SSD VLAN modelling, Matlab Simevent [11] was used to create a

process model for real QoS analysis while Packet tracer [12] was used to realise the priority

tagging for the end systems via VLAN setup as shown in figure 5. The figures in the next

section are plots from the simulation process model. Considering the OpenFlow switch
capacities (buffer sizes), offered load intensity, throughput, queuing delay, latency and

resource utilization, the following input parameters were utilized considering a workload
applications for our OpenFlow switch. Table 5 shows our MATLAB Simevent process model

parameters. The SSD VLAN backbone in this work considered the following network design
issues: Loops traffic, Convergence, Broadcasts, Subnetworking, Security, media dependence.

Table 5. MATLAB Simevent process model parameters

Attributes Values

Traffic Distribution Exponential

Service Time 1sec.

Number of VLAN 12

Configuration Register 0x2142

Cable length between each nodes 100m with GB ethernet

Maximum packet size (MTU) 1500 bytes

Packet generation rate for each node packet/s 100

Entity Type Standard

Generation Event Priority 300 bytes

Number of Entity Output Port 12

Number of Entity Input Port 12

RESULTS AND DISCUSSION

The results obtained from the VLAN MATLAB process model were presented and the various

plots shown in Figures 6 to 6.3. The simulation was run for emulated OpenFlowVLAN core

switch for a flow table size 25 to 1000 for different packet generation rates (arrival rates). Our

benchmark setup uses the Simevent application, from the Mathworks platform. The emulated

OpenFlow switch generates packet-in messages and we computed the performance

characteristics of the controller in processing requests. It provides us with entities, attributes,
subsytem block and FIFO blocks modelling the operation in abstract contexts. We then

measured system behaviour in terms of packet-in requests processed per second. Throughput,
OpenFlow table size against delay, resource utilization SSD latency plots were obtained for

packet-in message flooded on the FIFO switch which now forms outgoing packet-in messages
with frame payload. Figure 6 shows measures the throughput of the controller for service

requests fairly assigned. The plot shows an acceptable response for the differentiated services

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

241

on the VLANs. Regardless of the channel limitations, we conclude that OpenFlow switching is

a better alternative to software Ethernet Switching or IP Routing because it does the same

layer-2 and layer-3 functions with a high performance and scalability as shown in Figure 6.

Figure 6.1 depicts the plot of OpenFlow Size table against Queung delay. It is shown that the

flow size is not affected by queuing delay, as such in normal mode, we expect a system that

synthesizes and handles requests logically without any prior delays, hence improving the

performance index of the system.

Figure 6. A SDD Throughput Curve

Figure 6.1. A plot of OpenFlow Flow Size Table against Queung delay

In figure 6.2, our control plane switch is connected to the controller, serving 100 distinct MAC
addresses. In life testbed, the experiment is be run on a 32-core intel server running on a linux

debian platform with 64GB of RAM and each controller configured to use a single thread of
execution. However, owing to our future work, we restrict our analysis to a single-thread only

(not supporting multi-threading functionality). For the simulation run between the switch and

the controller, we run and measure the per-second rate of successful interactions. The resource

utilization plot was shown in figure 6.2. In the VLAN data environment (HPC), latency,

throughput, utilization, bandwidth is vital resources considered in traffic management. With the

traffic load sources in the twelve star topology used in this paper, a final gradient was gradually

established after a 0% to 40% and then a 100% throughput hit at the port 11 handling the node

at that instance. Afterwards, resource allocations were fairly distributed. With a connection

request, feasible regions of resource allocation are first established. From the test bed,

enterprise servers are dumped in site C (VLAN 70, VLAN 80, VLAN 90 and VLAN 100). This

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T

h

r

u

g

h

p

u

t

OpenFlow SSD Time (sec)

Synthesis Service Differentiated Throughput Curve

Simulation

Average Packet Throughput

(bits/sec)

Flow Size Tables

2 per. Mov. Avg. (Average

Packet Throughput (bits/sec))

2 per. Mov. Avg. (Flow Size

Tables)

-200

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

F

l

o

w

S

i

z

e

OpenFlow Simulation Time/1000 Secs.

OpenFlow flow Size Table Vs Qdelay

Flow Size Tables

Average Queuing Delay

Expon. (Flow Size Tables)

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 242
Copyright © 2013 SAVAP International

www.savap.org.pk

corresponds with the load sources 8, 9 and 10 from the plot. Resource utilization in these

regions is quite high, but these are the regions with high priority tags and as such the

computational power of the DCN servers are high. Thus, in DCNs, the regions of high priority

tags have the highest resource utilization cycles.

Figure 6.3 shows the SSD latency plot. Basically, there are three sources of latency in
conventional ethernet switches viz: wireline latency, switch fabric latency, and store and

forward latency. It is known that OpenFlow allows the path of network packets through the
network of switches to be determined by software running on cascaded devices. This

separation of the control, allows for more sophisticated traffic management and as such gives
room for improved latency response. We observe that at zero load time giving the load

sources from the plot, the connection requests has been established achieveing a near 100%
throughput in the model with a latency of less than 0.5µsec. This gives a better improvement

over the conventional models. This literally depicts a high performance switched model

since low latency networks have negative or zero initial load times.

 Figure 6.2. Resource Utilization Plot

Figure 6.3. SSD latency character

CONCLUSION

This paper has a Synthesis Service Differenciation (SSD) model in the context of OpenFlow

virtualization. For HPC market segemnts, an implementation of OpenFlow algorithms in

layer 2 and layer 3 devices will offer excellent performance as our metrics of evaluation gives
a better indication. The SSD DCN architecture is presented with its process model developed

Average Utilization,

101.3077

Average Packet

Throughput

(bits/sec), 7960

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
er

ce
n

ta
g

e
 T

h
ro

u
g

h
p
u

t i
n

d
ex

Terminal Load Sources

Resource Utilization Curve

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25

P

e

r

c

e

n

t

a

g

e

T

h

r

o

u

g

h

p

u

t

Terminal Load sources

SSD Latency Characterization

Average Packet Latency

Flow Table Sizes

Simulation

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

243

with MATLAB simevent for our data collection via the workspace command prompt.

Motivated by existing literature on HPC datacenter networks and the challenges poised the

current monolithic design of the underlying network; we implemented the SSD model as a

way of assigning priority protocol to end devices for better management of the OpenFlow

switch framework. With OpenFlow virtualization, we believe that this will provide an

efficient network programming API which will integrate with base network control plane and

data plane logics. This allows application integration to exercise flow level control with
OpenFlow protocol thereby allowing the underlying infrastructure to achieve an efficient

network performance.

Finally with OpenFlow virtualization, deployment flexibility, cost effectiveness and

improved computational requirements will be achieved.

We are currently working on Openflow switch data path as well as OpenFlow

implementation in Linux based setup. This will form part of our future work.

REFERENCES

[1]. OpenFlow, www.wikipedia.org/wiki/openflow

[2]. Charalampos Rotsos, Richard Mortier, Anil Madhavapeddy, Balraj Singh, Andrew W.

Moore, “Cost, Performance & Flexibility in OpenFlow: Pick Three”,(unpublished).

[3]. Charalampos Rotsos, Nadi Sarrar, Steve Uhlig , Rob Sherwood and Andrew W.

Moore, “OFLOPS: An Open Framework for OpenFlow Switch

Evaluation"(unpublished)

[4]. Torino, P. D. (2009). OpenFlow Switching Performance, Masters Thesis.

[5]. Bianco, A., Birke, R., Giraudo, L. & Palacin, M. (2010). OpenFlow Switching: Data

Plane Performance, In the IEEE ICC proceedings, pp.1-5.

[6]. Erickson, D., Hara, M., Heller, B., Lantz, B., Pettit, J., Pfaff, B. & Talayc, D. (2009).

OpenFlow Hardware Abstraction API Specification,” DRAFT Version 0.4 based on

OpenFlow 0.9.0, September 16.

[7]. Whitepaper: (http://OpenFlowSwitch.org)

[8]. Agilent N2X router tester. Web site: http://advanced.comms.agilent.com/n2x/

[9]. Lammle, T. (2007). Cisco Certified Network Associate study Guide, Sixth Edition,
ISBN: 978-0-470-11008-9.

[10]. Udeze Chidiebele. C., Okafor Kennedy. C., Prof. Inyiama, H. C. & Okezie, Dr C. C.

(2012). Effective Security Architecture for Virtualized Data Center Networks,

(IJACSA) International Journal of Advanced Computer Science and Applications, 3,

(1), pp 196-200,

[11]. Works, M. (2005). SimEVents user’s Guide. The MathWorks, Inc.

[12]. Cisco Systems, “Packet tracer” http://www.cisco.com/academy_2007.

[14]. Google's next OpenFlow challenge. http://www.gigaom.com/.../googles-next-

openflow-challenge-taking-sdns-to-the- ...

[15]. Next-Gen Network Drumbeats: Going With the OpenFlow,Available,
www.wired.com/cloudline/2012/04/openflow/

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 4 July 2013 Academic Research International

www.journals.savap.org.pk

 244
Copyright © 2013 SAVAP International

www.savap.org.pk

[16]. Ankur Nayak, Alex Reimers, Nick Feamster, Russ Clark, “Resonance: Dynamic

Access Control for Enterprise Networks” (unpublished).

[17]. Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N. & Ethane, S. S. (2007).
Taking control of the enterprise. In SIGCOMM ’07, [2] M. Casado, T.

[18]. Okafor, K. C. (2010). SVLAN Approach to Congestion Management in Data Center

Networks, M.Eng Thesis, University of Nigeria, Nsukka.

[19]. Scanning Technology for Automated Registration, Repair and Response Tasks.

https://start.gatech.edu/.

