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ABSTRACT 

This paper reports the stabilization of a novel system realized by additively coupling 

the Lorenz and Rossler chaotic systems. The structural dynamics of the novel system 

is distinctively different and topologically nonequivalent to the of either the Lorenz or 

Rossler systems. A Lyapunov function-based fuzzy controller was designed and 

employed to drive the trajectories of the system to some equilibrium point at the 

origin, in the sense of Lyapunov. The various scenarios observed by manipulation of 

the system's equations during numerical simulations using MATLAB software are 

discussed. Overall, the results show that the novel system is stabilizable at some 

equilibrium points. However, the parameters still need some fine tuning to produce 

an elegant relationship that can evolves into a strange attractor. 

Keywords: Fuzzy control, Lorenz system, Lyapunov stability theorem, Rossler 

system 

INTRODUCTION 

Since the discovery of chaotic dynamics in weather systems by Edward Lorenz in 1963 

(Lorenz, 1963), and the subsequent proofs of the present of chaos in several natural and man-
made systems, enormous intellectual and financial resources have been channeled towards 

unraveling the usefulness or otherwise of chaos for engineering and other scientific 
applications. These adventures led to the discovering of the Rossler, Chua, Matsumoto-Chua-

Kobayashi (MCK), Rabinovich, Sprott family of systems amongst a large body of others 

which formed the earliest attractors coined and extensively research upon. Chaos is a 

phenomenon of deterministic dynamic systems which are extremely sensitive to perturbation 

of their initial conditions and whose long-term evolution is difficult to predict. The ubiquity 

and usefulness of chaos in modeling real systems has transformed the search for newer 

strange attractors into a fascinating subject that cuts across disciplines. In this connection, 

many new attractors have been found accidentally while the discovery of others have 

followed a systematic order involving rigorous mathematical proofs and characterization of 

their geometric and statistical properties (Lu et al., 2002). And strikingly, every newly 

evolved chaotic systems has been received with open hand by the scientific community 

because they could be relevant presently or in the future, to engineering and non-engineering 

applications in secure communications (Guan et al., 2002), medicine (Kumar and Hedge, 

2012), economics and financial system modelling (Guegan, 2009), psychology (Robertson 
and Combs, 1995) amongst others.  Although many new attractors have topologically 

nonequivalent structures to the original canonical systems such as the Lorenz, Chen or 
Rossler from which they were coined, nonetheless, their structural evolutions consist 

essentially in directly manipulation of the canonical system equations (Pelivan and Uyaroglu, 
2010; Lu et al., 2004). The Lorenz equation is given by  

 ��	� = −��� + ��	 

 �	� = 
�� − �	 − ���� 
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	��� = ���	 − ���                              (1) 

Where  ��, 	�	 and ��  are states of the system. For typical parameters of � = 10, 

	
 = 28, � = 8/3, the famous butterfly attractor evolves. On the other hand, the Rossler 

system is represented by the following equations  

 ��	� = −�	 − �� 

 �	� = �� + ��	 

 ��� = � + ��(�� − �)                                  (2) 

Where  ��, 	�	 and ��  are states of the system. For typical parameters of = � = 0.2	���		� =
5.7 , a strange attractor evolves. 

THE LORENZ-ROSSLER CHAOTIC SYSTEM 

The dynamics of the system was first reported by Alsafasfeh and Al-Arni (2011). The system 
was coined by adding the Lorenz and Rossler systems directly and interpolating some state 

variables to match the form given by Cuomo et al. (1993). The additively-coupled Lorenz-
Rossler system is a three-dimensional autonomous system which has ten terms on the right 

hand side of the governing equations with three quadratic nonlinearities necessary for folding 

trajectories, five variational parameters and is described by the equation (3). 

 ��	� = �(�		 − ��) − �		 − �� 

 �	� = ��� − �	 − 20���� + ��	 + ��	 

	��� = 5���	 − ��� + � + ��(��	 − �)                   (3) 

Where [��, �	, ��]
! ∈ ℜ

�
  is the state variables of the systems, a, b and c are parameters. It is 

easy to verify that the system in (3) is globally, uniformly and asymptotically stable about its 

zero equilibrium if � > 0, � > 0, � > 0. the rate of volume contraction is given by the Lie 

derivative, 

�

$

%&

%'
= ∑

)*+�

)*,
- , . = 1,2,3;	0� = �,0	 = 1,0� = 2	   (4) 

For the additively-coupled Lorenz-Rossler system, at the equilibrium point (0, 0, 0), we 

obtain 

�

	$

%&

%'
=

)3�

)3
+

)4�

)4
+

)5�

)5
= −� − 1 + � − � = 6           (5) 

For � = 20, � = 8.5, 6 = −29.5 + �. For � < 29.5, 6	is negative and the system is 

dissipative. For case 1, with parameter values of � = 20, � = 20, � = 9, � = 8.5, 	� = 0, � =
8, the system evolves the following attractors in Figure 1(a)- (c), and in case 2, when the 

constant associated with the nonlinearity 5���		 is changed to 20���	 with same parameter 

values as in case 1, the attractor evolved into a dense orbit shown in Figure 1(d)-(f). This 

mild change has significant influence of the stabilizability of the system.  
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Figure 1. Evolution of strange attractors, (a) - (c), when the cross-product constant is 5���	 and     

(d)-(f), when the constant is changed to 20���	 

 

Figure 2. Time series evolution of the system trajectories 
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FUZZY MODELLING AND CONTROL 

Fuzzy logic, on which fuzzy control evolved, is a computational paradigm on fuzzy set theory 

that allows for degrees of truth and falsehood. It provides a formal framework for 
constructing systems exhibiting both good numeric behavior and linguistic representation and 

can handle imprecise and incomplete information, thus making it possible to construct a 

model that can control a dynamic system without necessarily having a rigorous mathematical 

framework.. Mamdani (Mamdani, 1974) and Takagi Sugeno (TS) fuzzy models (Takagi and 

Sugeno, 1985), are widely used in modeling nonlinear systems. In the Mamdani fuzzy 

models, the antecedent and consequent parts of the fuzzy rules are fuzzy sets represented by 

membership functions, while the Takagi Sugeno model, the antecedent is a fuzzy set while 

the consequent part is a linear function of the input or a singleton.  The TS fuzzy model is 

computational more efficient and has been utilized extensively in modelling nonlinear 

systems whose mathematical representations are rather intractable. More specifically, a 

generic and simplified form of the TS fuzzy model for an i-th fuzzy rule can be written in the 

following form given by: 

 If �	.9	:�	;<=>			1 = ?� + @               (6) 

Where x is the input, :� is a linguistic variable, y is the output, A and B are constants. 

The fuzzy controller synthesis was performed using Lyapunov stability theorem. A typical 

fuzzy logic controller architecture is given in Figure 3. 

 

Figure 3. Fuzzy Logic Controller architecture 

STABILITY AND STABLIZATION 

Many studies on the stabilization of chaotic systems using fuzzy controllers or a hybrid of 

fuzzy and neural controllers have appeared in the literature (Precup et al., 2007; Wang and 

Ge, 2001; Vaidyanathan, 2012). In the work of Rezaie et al., (2006), Mamdani fuzzy 
controllers were used to stabilize the unstable periodic orbits of chaotic systems with 

satisfactory performances, although the number of rules was comparably large. In the 
framework of the Takagi-Sugeno fuzzy model (Takagi and Sugeno, 1985), an approach 

utilizing linear matrix inequality and so-called parallel distributed compensation was 
proposed by Tanaka and Wang (2001). This approach appeared appealing, however, the 

design approach is mathematically rigorous and the designed controllers required a large 
effort to stabilize the chaotic dynamics. In recent times, the Lyapunov stability theory has 

been studied in detailed and applied to the fuzzy stabilization problem (Wong et al, 2000). In 

the Lyapunov approach, a common Lyapunov function which guarantees asymptotic stability 

based on the dynamics of a given system is usually formulated. If the derivative of the 

Lyapunov function as a function of time is negative definite or negative semi-definite, then a 

sufficient condition for stability has been provided. An improved stability method proposed 



Part-I: Natural and Applied Sciences 
ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol. 4  No. 4   July  2013 

 

Copyright © 2013 SAVAP International 

              www.savap.org.pk 

www.journals.savap.org.pk 

189  

 

by Wong et al., 2000 has successfully applied to stabilize chaotic systems (Precup et al., 

2007). This method which is based on the Takagi-Sugeno fuzzy modelling is used in this 

study.     

Lyapunov Stability Criteria 

The Lyapunov stability criteria provide a flexible and superb approach to analyzing the 

stability scenarios in a nonlinear system. These criteria have been outlined lucidly in various 

texts (Slotine and Li, 1991; Khalil, 2002). For the sake of clarity, we will repeat the universal 
definitions and theorems here. Consider a dynamic system which satisfies 

  �� = A(�, B),			�(BC) = �C,			� ∈ ℜ
D

               (7) 

Where 	A: F → ℜ
D

 is a locally Lipschitz map from a domain F ⊂ ℜ
D

 into ℜ
D

. The 

following definitions and theorems therefore hold: 

Definition (Khalil, 2002): the equilibrium point � = 0 of (7) is: 

1. Stable if, for each I > 0, there is J = J(I) > 0 such 

  ‖L(M)‖ < N ⇒ ‖L(P)‖ < Q  , ∀P ≥ M             (8) 

2. Unstable if it is not stable 

3. Asymptotically stable if it is stable and J can be chosen such that  

 ‖L(M)‖ < J ⇒ TUVP→W L(P) = M                               (9) 

Selecting a Lyapunov function X: F → Y such that  

X(0) = 0 and X(�) > 0 in F − Z0[                 (10) 

 X� (�) ≤ 0   in F − Z0[                                (11) 

Implying that  � = 0  is stable in the sense of Lyapunov. Moreover, if                 

 X� (�) < 0   in F − Z0[                                   (12) 

Then � = 0  is asymptotically stable. 

To synthesize the Fuzzy Controller based on the method given by Wong et al., (1998), 

equation (12) must be negative definite in every fuzzy subsystem's active region and the 

defuzzification method given in equation (16) must be applied.   

DESIGN OF THE FUZZY STABILIZATION CONTROLLERS 

Given an autonomous nonlinear dynamic system comprising a plant and a Fuzzy Controller 

described by the equation 

�� = A(�) + �(�)], �(BC) = �C                              (13) 

Where � = [��, �	, ……�D	]T   is a state vector, A(�) = [A�		(�), A		(�)… …AD(�)]T and 

�(�) = [��		(�), �	(�)…… . . �D(�)]T  are function vectors describing the dynamics of the 

plant, u is a control signal generated by the FLC. The FLC consists of _ rules. The overall 

control signal applying to the plant is a function of ]- and -̀ (Wong, 2000) where  ]- is the 

control signal generated by each fuzzy subsystem formed by the fuzzy rules. The i-th fuzzy 

rule of the Fuzzy Controller is of the following form: 

Rule  a :   IF Lb is гab 	?>F	Ld	 is  гad 	?>F … . . ?>F	�D	.9		г-D, 

                          THEN  ] = ]-(�)                                   (14)                                              
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Where  г-�	, г-	 … . г-D,	 are inputs fuzzy labels, and ] = ]-(�) is the control output. 

Moreover, each fuzzy rule therefore generates a degree of fulfillment -̀(�) given by:  

à = min( -̀�, -̀	 … -̀D) ;				 -̀ ∈ [0,1], . = 1,2… �       (15) 

Definition (Wong et al., 2000): A fuzzy subsystem associated with fuzzy rule . is a system 

with a plant of (13) controlled by only ]-, which is the output of fuzzy rule . in the form of 

(14). 

By using the singleton fuzzifier in conjunction with min-max inference and the weighted sum 

defuzzification method, the overall Fuzzy Controller output control signal is given by  

h =
∑ i,(3)j,(3)

k
,lm

∑ i,(3)
k

,lm

                                          (16) 

The fuzzy control scheme, triangular membership functions with linguistic terms Negative 
(N), Zero (Z) and Positive (P) chosen heuristically for state variables, x and y, with universe 

of discourse ∪3m
	∈ [−100,100]	���		 ∪3o

	∈ [−80, 80];	∪3p
∈ ∅,  and the fuzzy rule base are 

given in Figures 4 and 5 and Table 1 respectively. 

  
Figure 4. Fuzzy logic control scheme 

 

Figure 5. Triangular memberships function for  ��, �	 ; 

 �� ∈ [−100	100]; �	 ∈ [−80	80];	�� ∈ ∅ 

Table 1. Fuzzy Controller rule base 

Rule 
Antecedent Consequent 

�� �	 ]- 

1 P P ]� 

2 N N ]	 

3 P N ]� 

4 N P ]r 

5 P Z ]s 

6 N Z ]t 

7 Z P ]u 

8 Z N ]v 

9 Z Z ]w 
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FUZZY CONTROLLER SYNTHESIS 

Theoretical results 

Application of the Lyapunov stability criteria to synthesize the fuzzy controller requires the 

addition of a control input ] to the original system equation and subsequent transformation 

into a state-space form (Precup et al., 2007). A detailed proof of the stability approach can be 

found in Wong et al., 1998, 2000). In this work, the control input was added to the first 

equation in (3) as given in (17) 

��	� = �(�		 − ��) − �		 − �� + ] 

 �	� = ��� − �	 − 20���� + ��	 + ��	 

	��� = 5���	 − ��� + � + ��(��	 − �)               (17) 

The standard Lyapunov function was chosen 

 Xx(��, �	, ��) =
�

	
(��

	 + �	
	 + ��

	)                         (18) 

	y = 1,2. . _, _ = 9           

(p is number of fuzzy rules). 

The partial derivative of (18) yields    

X� x(��, �	, ��) = ����� + �	�	� + �����                  (19) 

Inserting (17) in (19) yields 

 X� x(��, �	, ��) = ��(�(�		 − ��) − �		 − �� + ]) + �	(��� − �	 − 20���� 		+ ��	 + ��	) +
5���	 − ��� + � + ��(��	 − �))         (20)    

Collecting like terms and taking �� = 0	  (�� is an empty set)                                         

X� x(��, �	, ��) = ���	(� + �) − ��
	(� + 1) − �	

	(1 − �) + ��]        (21) 

In order to transform (21) into the form of (13) 

Let  z = ���	(� + �) − ��
	(� + 1) − �	

	(1 − �)        (22) 

@ = ��               (23) 

X� x(��, �	, ��) = z + @(]) ≤ 0, y = 1,2…9          (24) 

(F and B are scalar). From (24), the control signal applied to each fuzzy subsystem is 
therefore 

]x ≥ −
{

|
,	 y = 1.2…9              (25) 

By utilizing the fuzzy rule base table and inserting the parameters in (22) and (23), equation 
(24) was satisfied for all fuzzy subsystems. As a result, the trajectories were locally and 

globally stabilized in the sense of Lyapunov.  

Numerical Simulation Results 

The closed loop system was simulated with MATLAB for two scenarios i.e. with constants of 

nonlinearity  5���	 and 20���	 respectively.  

Case 1: Using (3) when the constant is 5���	  with initial conditions [��(0), �	(0), ��(0)] =
[0.01,0.01,0.1] 
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Figure 6. Controlled trajectories of the closed loop system for 5���	 

Case 2: When the constant associated with the nonlinearity ���	  of the second equation of 

(3) is changed to 20���	 for the same initial conditions as in case 1. 

 

Figure 7. Controlled trajectories of the closed loop system for 20���	 

DISCUSSION 

The Lorenz-Rossler system has rich dynamics which are topologically distinct from both 

Lorenz and Rossler systems. The results of simulations show that the system is stabilizable. 
However, the novel system presents more challenge to asymptotic stabilization than the same 

scenarios involving the individual Lorenz and Rossler systems. As shown in Figure 6 of Case 
1, the system was asymptotically stabilized at some equilibrium points. However, in Case 2 

where the system was stabilized in the neighborhoods of the origin.   

CONCLUSION 

This work shows that the trajectories of Lorenz-Rossler system are stabilizable. As the 

system is further studies, its rich dynamics can be further explored with the possibility of 

robust stabilizability. These possibilities assure the system's usefulness in synchronization of 

signals in secure communications applications.  
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