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ABSTRACT 

Earlier solutions on pure bending of thin rectangular flat plates were based on the 

use of trigonometrical series. However, series method has the problem of improper 

representation of deformed shape of plate in vibration. For such problems, the use of 

numerical methods for approximate solutions becomes necessary. In this study, 

Ordinary Finite Difference method (OFDM) as one of the popular numerical 

techniques was used in free vibration (FB) analysis of thin rectangular flat plate. The 

differential equations of the biharmonic plate were transformed to fit the chosen grid 

pattern and these transformed equations were expressed in finite difference (FD) 

form. These differences were evaluated at each nodal point to obtain a set of 

simultaneous algebraic equations that were solved for the unknown functional values 

after using the proper boundary conditions of SSSS, CCCC and CSCS respectively. 

Visual Basic (VB) software program was developed and used in solving the algebraic 

equations, while the resulting natural frequencies �, were compared with the exact 

values for an aspect ratio of 1.0 as shown in tables 1, 2 and 3 respectively. The 

solutions obtained in this study approximated closely to the exact solutions as shown 

in the tables. Hence, ordinary finite difference method (OFDM) provides simple and 

approximate solutions that are very close to exact values for this family of problems. 

Keywords: Boundary Conditions, Characteristic Equation, Eigen values and 

Eigenvectors, Fundamental Natural Frequency, Ordinary Finite Difference Method, 

Resonance 

INTRODUCTION 

Free-vibration analysis of thin rectangular flat plates is of interest in the field of mechanics, 

civil and aerospace engineering. In the past years, plate problems have been treated by the 

use of Fourier series or trigonometric series as the shape function of the deformed plate. 

However, no matter the approach used, the use of trigonometric series (double Fourier series 

and single Fourier series) has been predominant. Most times, when it is becoming intractable 

to use the trigonometric series, trial and error means of getting a shape function that would 
approximate the deformed shape of the plate would be used (Ibearugbulem, et al.). 

Gorman (1982) carried out free-vibration analysis of SSSS and CSCS plates using single 

Fourier series. Ventsel and Krauthammer (2001) used the Galerkin’s method to carry out 

free-vibration analysis of SSSS plate. Szilard (2004) used ordinary finite difference method 

to determine the fundamental natural frequency of a square plate with all the sides clamped 

(CCCC). Jiu, et al. (2007) used Bessel functions to carry out free vibration analysis of SSSS, 

CCCC and CSCS plates. Mansour, et al. (2008) presented an analytical solution for free 

vibration of four edged simply supported (SSSS) rectangular Kirchhoff plate by wave 

propagation method.  

In this paper, the ordinary finite difference method (OFDM) was used to obtain solutions for 

the free-vibration analysis of thin rectangular flat plates carrying uniformly distributed load 
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with the following boundary conditions (Figures 1 - 3): (i) SSSS; (ii) CCCC and (iii) CSCS. 

An interactive ordinary finite difference method based software program was written in 

Visual Basic and provided to make the solution easy. 

 

 

 

 

 

 

THIN PLATE THEORY 

The free harmonic vibration of a thin plate with constant thickness h is governed by the 
differential equation given by Jiu, et al (2007) as; 

                                 ∇�W(�,�) − ��⍴�� W(�,�) = 0																									(1) 

Where;       ∇�  is the biharmonic differential operator (i.e., ∇� = ∇�∇�) 

                       ∇�W(�,�) = �����W(�,�) + 2 ��������W(�,�) + �����W(�,�)                (2) �   is the natural circular frequency of the vibrating plate given in rad/sec. 

            �    is mass density of the plate. 

             h is thickness of the plate. 

BOUNDARY CONDITIONS 

For a thin rectangular flat plate with edge lengths a and b, there are eight boundary conditions 

for every case. Three cases are discussed below: (i) fully simply supported, SSSS. (ii) Fully 
clamped, CCCC. (iii) Two opposite edges clamped and the other edges simply supported, 

CSCS. 

SSSS Plate:  W (0, y) =0; W (a,y) = 0; W(x,0) = 0; W(x,b) = 0; W���(0,�) = 0;           

                     W���(�, �) = 0;W���(�, 0) = 0;W���(�, �) = 0;                        (3)         

Where	W��� = #�$#�� 	�%&	W��� = #�$#��  

CCCC Plate: W (0, y) =0; W (a,y) = 0; W(x,0) = 0; W(x,b) = 0; W��(0,�) = 0;  

                        W��(�, �) = 0;W��(�, 0) = 0;W��(�, �) = 0;                            (4) 

Where	W�� = #$#� 	�%&	W�� = #$#�  

CSCS Plate: W (0, y) =0; W (a,y) = 0; W(x,0) = 0; W(x,b) = 0; W���(0, �) = 0;  

                       W���(�, �) = 0; W��(�, 0) = 0;W��(�, �) = 0.                                 (5) 
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Figure 3: CSCS plate 



Part-I: Natural and Applied Sciences 
ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol. 4  No. 2   March  2013 

 

Copyright © 2013 SAVAP International 

              www.savap.org.pk 

www.journals.savap.org.pk 

189  

 

ORDINARY FINITE DIFFERENCE COEFFICIENTS AND PATTERNS 

 

 

 

 

 

 

 

 

Figure 4. Diagram showing a discretized Rectangular Plate 

Where P = M / N is the aspect ratio. M and N are the spans of each rectangular panel. 

Point i(0,0) is taken as the origin. Using the Central Difference, the Ordinary Finite-

difference coefficients for the differentials are given below as: 

                         
�'�� = (�) *W(),+) −W(,),+)- = (�) .W/ −W�0  (6) 

�'�� = (�1 *W(+,1) −W(+,,1)- = (�) .W(� −W20    (7) 

��'��� = ()� *W(),+) − 2W(+,+) +W(,),+)- = ()� .W/ − 2W3 +W�0  (8) 

4�54��  = 
(1� *W(+,1) − 2W(+,+) +W(+,,1)- = 

(1� .W(� − 2W6 +W20  (9) 

��'��� = 1 8�9 *$(�:,+) − 4$(:,+) + 6$(+,+) − 4$(,:,+) +$(,�:,+)-  

= 1 8�9 .$� − 4$/ + 6$3 − 4$� +$(0    (10) #�$#�� = 1 =�9 .$(+,�>) − 4$(+,>) + 6$(+,+) − 4$(+,,>) +$(+,,�>) 
                            = 1 =�9 .$�� − 4$(� + 6$3 − 4$2 +$(20              (11) 

2 #�$#��#�� = 18�=� .2$(/ − 4$/ + 2$? − 4$(� + 8$3 − 4$2 + 2$(( − 4$� + 2$A0 
N�∇�= (C� .$� − 4$/ + 6$3 − 4$� +$(0 + .$�� − 4$(� + 6$3 − 4$2 +$(20 +(C� .2$(/ − 4$/ + 2$? − 4$(� + 8$3 − 4$2 + 2$(( − 4$� + 2$A0                     (12) 

The Patterns are given as; 
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The ordinary finite-difference coefficients and patterns derived were used to replace the 

derivatives in the governing equation and applied at each of the internal nodes noting the 

boundary conditions to generate the required eigenvalue equation. 

EIGENVALUE EQUATION 

Equation (1) yields an eigenvalue equation given as; 

 (D − EF)� = 0                             (13) 

Where; 

         � = .�30 is a column matrix whose element �3 represent the amplitudes of the free 

vibration. D = .�3G0is a square matrix obtained from the ordinary finite–difference expression of the 

biharmonic operator ∇�. F = *�3G- is a diagonal matrix representing the constant 
HIJ . E = ��, the circular frequency 

Pre-multiplying eq. (2) by B
-1

, we obtain; (K − EL)� = 0                             (14) 

This is the general eigenvalue equation for free-vibration of thin rectangular flat plates.  

Where; K = F,(D	�%&	L is an identity matrix. 

For non – trivial solution of eq. (14), ie. � ≠ 0, the determinants of the coefficients must 

varnish; 

∴ |K − EL| = PP
K(( − E K(� K(/ 		… K(RK�( K�� − E K�/ 	… K�RK/( K/� K// − E	… K/R⋮ ⋮ ⋮ ⋮KR( KR� KR/ KRR − EP

P = 0															(15) 
The expansion of equation (15) yields a polynomial equation of  %UI– order in  E, and this is 
called the characteristic equation. The roots E3(V = 1,2,3,… , %) are the eigenvalues of the 

vibrating system from which the natural circular frequencies �3 = √E (i=1,2,3, …,n) are 

calculated (Szilard, 2004). 
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Figure 8. Pattern for 
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Figure 7. Pattern for∇� 
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The ordinary finite-difference coefficients and patterns derived were used to write a Visual 

Basic program which generated the required eigen value equation as well as the eigen values 

and eigenvectors for the SSSS, CCCC and CSCS plates when the grid sizes, n and the Aspect 

ratios a/b were entered. 

RESULTS AND DISCUSSIONS 

The fundamental natural frequency is given as; 

                 �( = YZ�[ JHI 	\�&/^ , where h is the thickness of the plate. 

Table 1. Values of _ for SSSS plate from the various methods 

Aspect Ratio 

a/b 

Ventsel& Krauthammer 

(2001) ‘V’ 

Chakraverty (2009) 

‘C’ 

Present Study. 

‘P’ 

% Difference 

‘P’ and ‘V’ 

1 19.739 19.739 18.750 -5.275 

Comparison of the present solution and two exact methods was shown in table 1. From the 

table, it is evident that the solution from Chakraverty (2009) and that of Ventsel& 

Krauthammer (2001) are the same. This is an exact solution. 

The percentage difference between solution from the present study and that of Chakraverty 

(2009), is -5.275%. This difference is small and within the range of acceptance in statistics. 
Thus, the present study in this case gives a close approximation to the exact solution. 

However, the solution from the present study is a lower bound solution. 

Table 2. Values of _ for CCCC plate from the various methods 

Chakraverty (2009) 

‘C’ 

Szilard (2004) 

‘S’ 

Present Study. 

‘P’ 

% Difference 

‘P’ and ‘C’ 

% Difference 

‘P’ and ‘S’ 

35.988 28.80 28.80 -24.96 0 

From table 2, it is evident that the solution from Szilard (2004) and that of the present study 
are the same. This is not a surprise since the two solutions are based on the ordinary finite 

difference method. 

The percentage difference between solution from the present study and that of Chakraverty 

(2009), is -24.96%. This difference is large. This is because the ordinary finite difference 

method in this case does not give a better result beyond the grid size of 3. Thus in this case, it 

approximates slowly to the exact solution. However, the solution from the present study is a 
lower bound solution. 

Table 3. Values of _ for CSCS plate from the various methods 

Chakraverty (2009) 

‘C’ 

Gorman (1982)  

‘G’ 

Present  Study. 

‘P’ 

% Difference 

‘P’ and ‘C’ 

% Difference 

‘G’ & ‘C’ 

28.95 28.93 24.29 -19.18 -0.069 

Table 3 shows the comparison of the present result with that of Chakraverty (2009) and 

Gorman (1982). From the table, the percentage difference between solution from the present 
study and that of Chakraverty (2009), is -19.18%. This difference is large. This is because the 

ordinary finite difference method (OFDM) in this case does not give a better result beyond 
the grid size of 3. Thus in this case, it approximates slowly to the exact solution. However, 

the solution from the present study is a lower bound solution. 
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Comparison between the solutions from Chakraverty (2009) and Gorman (1982) shows that 

the two results are approximately equal. The exact solution is somewhat around these two 

solutions. 
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