
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013 Academic Research International

www.journals.savap.org.pk

 124
Copyright © 2013 SAVAP International

www.savap.org.pk

FORMAL SEMANTICS, SYNTAX, PRAGMATICS:

AN ESSENCE OF PROGRAMMING LANGUAGE DESIGN

Kebande Rigworo Victor1, Karani Nyachiro Nelson2

1, 2
Department of Computer Science, Egerton University, Njoro,

KENYA.

1
vickkebande@yahoo.com ,

2
rirubius@yahoo.com

ABSTRACT

Programming language design constructs envisages all the essential attributes that

contribute to better language, development methods and various ways through which

the language design and extensions can be implemented. The syntax constitutes the

form, the semantics constitutes the meaning those factors in static and dynamic

analysis of programs, and pragmatics shapes the language so that correctness of

programs can be achieved. Developing a language with this constructs will aim at

achieving systematic approaches and optimization of methodologies used, this will

enhance domain specific languages. By use of syntax, semantic and pragmatics a

correlation between, expressions, values, type systems will ignite compilers and

virtual machines to give a better understanding of the program and performing

analysis and program synthesis, the action will help in improving and checking for

correctness.

Keywords: Formal semantics, Syntax, Pragmatics, Programming.

INTRODUCTION

The formal development and design of any program needs to be associated with some

programming linguistics (slonneger, Barry,1995) the prominence is on the structure of the
program, the pattern, the meaning and how the entire program will be implemented within its

predefined , user defined structure, and its syntactic and semantic composition. In order for a
particular programming language to carry out its expansive task however, design must also

attempt to convey a meaning or the intended function. We try to analyze different design
constructs which are concerned with semantics [1], this includes the study of meaning in

human language, syntax which depicts the rules to be governed , generally mathematical
descriptions of syntax use formal grammars [5] they should be precise, concise,

clear(sewell,2008)and finally Pragmatics which highlights how the concept can be

implemented, description and examples of how the various features of the language are

intended to be used[6].Implementation of the language is facilitated by the language

processors like compilers, interpreters and Auxiliary tools i.e syntax checkers, debuggers,

source editors etc.).We study major issues in this field: (1) the nature of meaning, (2) the

contribution of syntactic structure to the interpretation of programming statements, and (3)

the possible influence of language design on thought.

Influence of Language Design Concepts and paradigms

We have examined values, type’s scope and binding and how they influence language design

concepts on a paradigm that contains different dependencies [10] on programming.

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

125

Figure 1. Representation of Synthetic,Semantic and pargmantics

Values and types for Language design

Values can help build the language structure in different aspects, they can be store, can be

computed, stored [8] and at large they take part in creation of data structures. To build this
design aspects of types[8] which belongs to the same type, the types have to be introduced to

follow the meaning [1] of the design structure, this is composed of integers [9] range with

precisions(-2
15

~ 2
15

-1 or -2
31

~ 2
31

-1) short integer with precisions (-32768-

+32767),unsigned integers(0 ~ 65535 or 0 ~ 2
32

-1),long integer (-2
31

~ 2
31

-1), unsigned[9]

long integers(0 ~ 2
32

-1) floating point numbers ,character numbers with precisions (-128-

+127),unsigned character numbers(0-255).Other types that spice the language [8] includes

structures, unions and arrays.

(Watt, Findlay, 2004) proposed that values belongs to the same types either though primitive
types or composite types which further attracts [2] cardinalities, mappings, powerset and

recursive decomposition

Example 1: Composite Type for Cartesian product

A Cartesian product will contain

A × B = {(m, n) | m ∈ A, n ∈ B} [A intersection B]

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013 Academic Research International

www.journals.savap.org.pk

 126
Copyright © 2013 SAVAP International

www.savap.org.pk

Example:

A = {a, b, c} B= {1, 2}

A × B= {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

It depicts that values that m carries belongs to [8] type A and values that n carries
belongs to type B.

Example 2: Composite Types For Disjoint Union

A + B= {left x | x ∈ A} ∪ {right x | x ∈ B} [A union B]

Example:

A = {1, 2, 3} B = {3, 4}

A + B = {left 1, left 2, left 3, right 3, right 4}

Example 2 depicts that the type A is combined with all the elements of type B

Binding and scope for Language design.

Developing a program by use of binding provides an association that is created between
different [2] entities mostly two entities, this can be a memory location, a name or a function

within development of a program; predominantly it occurs between [2] the name being
represented and the object. Bindings in development of language needs to incorporate

reference environments which factors in many issues like; Binding time which contains
design time, implementation time, program writing time, link time, load time and compile

time. Binding effects can be felt in the program development either as early or late binding.
The effect of this is having the lifetime of the object bound to the language to be developed

and invoke all the necessary parameters.

Example 3: Highlight Of C++ Language.

thisClass myObject=*new thisClass

{

theirClass myObject=*new thisClass

myObject………………………………..(i)

}

myObject………………………………...(ii)

{

delete myObject.

In creation of a lifetime binding myObject in (i) is bound to other object but after the new

class in (ii) before it is destroyed in delete myObject.

SYNTAX

 Tree Syntactic Structure and Interpretation.

The tree syntactic representations [7] (tree structures) generated are significant not only for

determining the form of program logic that is to be used in developing programming
structures statements, but also determining their interpretation. In this section, we will

consider the Relevance of syntactic structure to three aspects of the programming logic
statement interpretation and representation of structural ambiguity.

Syntax Structure Ambiguity

As noted in section 1 on syntax, programming statements are ambiguous because their

component structure can [4] be arranged into phrases in more than one way; this is called

structural ambiguity and is to be distinguished from lexical ambiguity. Structural ambiguity is

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

127

exemplified by phrases like old men and women, where we take old to be a property of both

the men and the women or the men alone. These two interpretations or readings can be

linked.

These two interpretations or readings can be coupled to separate syntax structures, as Figure

2 shows. (C = connector.) Figure 2a. Corresponds to the reading in which old modifies men

as well as women. This is shown by making the adjective a sister of the category that

dominates both nouns. In Figure 2b.

 Adj

SEMANTICS

Formal semantics is the branch [5] of semantics that studies the logical aspects of meaning.

Semantic features an approach to meaning, it tries to associate a word's intention with an

abstract concept consisting of smaller [1] components called semantic features. This

componential analysis is especially effective when it comes to representing similarities and

differences among words with related meanings.

Semantics analysis allows us to cluster [15] all entities into innate modules. Hence, man and

boy could be grouped together as [+PERSON, +MALE], while man and woman could be put

in a class defined by the features [+PERSON, +ADULT].

man: boy:

 + PERSON + PERSON

 + MALE + MALE

 + ADULT - ADULT

woman: girl:

 + PERSON +PERSON

 - MALE - MALE

 + ADULT -ADULT

Figure 3. Semantic feature composition for man, woman, boy, girl.

Ajd

NP

N

NP

and

women

C N

Old

b.

Adj

C N

Old

N

N

NP

men and women

a.

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013 Academic Research International

www.journals.savap.org.pk

 128
Copyright © 2013 SAVAP International

www.savap.org.pk

Componential analysis gives its most impressive results [3] when applied to sets of

statements referring to classes of entities with shared properties. A few simple features will

allow us to distinguish among subclasses of people-men, women, boys, and girls.

COPY SEMANTICS VS REFERENCE SEMANTICS

Values and types must always undergo a transition; i.e a program will assign a composite

value to a variable of the same type (watt, Findlay 2004).

(Watt,Findlay2004) describes the copy value semantics as the semantics that will copy all
the existing [2] components of the composite value into the entire corresponding components

of that composite variable and in reference [2] semantics the assignment makes the
composite variable contain a pointer or reference to that variable.

Example 4: Case: C++ Copy Semantics

Struct year

{

int month,day

};………………………………(x)

Year thisyear={2013};

Year nextyear;

nextyear=this year;

(x) denotes the end of struct declaration for copy semantics,year nextyear contains the year
of thisyear

Example 5: Case:C++ Reference Semantics

Year* yearP = new year;

year* yearQ = new year;

*yearP = yearA;

yearQ = yearP;

In reference semantics two variables *yearP and yearQ contains reference or pointers to date

variables.

PRAGMATICS

There exists a major factor in programming language statements interpretation; this involves
a broad scope of knowledge that is often called pragmatics. This includes the programmers

actions, the way he plans to implement the created programs using syntax and semantics and
it addressee's the programmers background and attitude and what he is intended to create,

their understanding of the context in which a programming language statement is created
from, and their knowledge of the way of in which language is used to communicate

information.

CASE: PROGRAMMING LANGUAGES

Procedural programming and Imperative programming

It is a model that is based on moving bits around and changing machine state.

Programming languages based on the imperative paradigm have the basic unit of abstraction
is the procedure, whose basic structure is a sequence of statements that are executed in

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

129

succession, abstracting the way that the program counter is incremented so as to proceed

through a series of machine instructions residing in sequential hardware memory cells.

Example 6

/* A program in C-like syntax, */

inti=1;

main() {

int y = 5;

printf("%d\n",f(y)+g(y));

printf("%d\n",g(y)+f(y));

}

int f(int x) {

i = i*2;

returni*x;

}

int g(int x) {

returni*x;

}

Modular Programming

It basically involves breaking a program down into subcomponents called modules. Each

module is composed of an independent or self contained block of instructions. Modules are

also referred to as routines, subroutines, or subprograms or procedures. An approach of

modular programming ensures that a programmer can valuate the potential of hiding data and

procedures to protect against unauthorized access form other modules.

Example 7.Modular Programming

Module_1

{

//self contained block of instructions

}

Module_2

{

//self contained block of instructions

}

…

….

Module_n

{

//self contained block of instructions

}

Functional Programming

Functional programming t treats computation as the assessment of arithmetic functions and
avoids state and inconsistent data. It emphasizes the relevance of functions.It has a first class

functions and a higher order functions.

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013 Academic Research International

www.journals.savap.org.pk

 130
Copyright © 2013 SAVAP International

www.savap.org.pk

Example 8. Functional Programming

int sum (int i, int j)

{

if (i>j) return 0;

else return i + sum(i + 1, j);

Functional version with recursion. Here following the syntax the function will call itself again

and again. The function Sum calls itself more than once.

Object oriented programming

Object oriented programming adopt concepts of classes and objects with their syntax. Classes

display various attributes (Balagurusamy.2008).Old classes can have the power of extending

to other classes.

Example 9: A Class That Wants To Inherit another Class Follows the Following Syntax

class old_classname: public/private/protected new_classname

{

//code for inheriting a particular task

}

The old_classname uses a (:) visibility mode to inherit properties of the new class

new_classname

Example:Outside Class Definition Syntax

return_type classname : : function_name(argument)

{

//code……………...

}

Return type carries the type of value to be presented then a defined classname. The scope

resolution operator (::) presents a link to the function name, and a choice of arguments.

Objects use dot operator to access the contents of the class via the member functions (E

balagurusamy, 2008) defined in the public section.

Example: Object Syntax

Classname object;

Object.member function;

CONCLUSION

The inclusion of formal semantics to programming language is apprehensive with an

extensive array of phenomena which basically includes the nature of meaning, the peak
responsibility of syntactic structure in the interpretation of sentences, and the upshot of

pragmatics and the programmer’s attitude on the understanding of programming language

statements. Even though solemn issues and obstacles remains in all this key areas of

programming, in current years programmers at least begun to identify the type of relations,

mechanisms, and principles involved in the understanding of programming language. These

include the concept of extension,word meaning, Command Requirement in the case of syntax

interpretation, and thematic role assignment in the case of programming language

interpretation.

Part-I: Natural and Applied Sciences
ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 4 No. 2 March 2013

Copyright © 2013 SAVAP International

 www.savap.org.pk

www.journals.savap.org.pk

131

REFERENCES

Slonneger, K. (1995). Formal syntax and semantics of programming languages: A laboratory

based approach / Kenneth Slonneger, Barry L. Kurtz.

David A, W. (2004). Programming Language Design Concepts. Chichester: John Wiley &

Sons Ltd.

John, L. (1977). Semantics. Vols. 1 and 2. London: Cambridge University Press.

Ravi et al., (2007). Ullman Compilers, Principles, Techniques, and Tools (2
nd

 ed.).

Sewell, P. (2008) Semantics of programming languages Available on

http://www.cl.cam.ac.uk/teaching/0809/Semantics/notes-mono.pdf

Hennessy, M. (1990). The Semantics of Programming Languages. Chichester: John Wiley &

Sons Ltd.

Arnold m. Zwicky (1990). Syntactic representation and phonological shapes, simple and

composite. Yearbook of Morphology 1990

Onur Tolga S¸ehito˘glu . (2008).Programming language values and types. Available on

http://ocw.metu.edu.tr/pluginfile.php/2979/mod_resource/content/0/lectures/02-

valuesandtypes.pdf

Balagurusamy, E. (2008).Programming in ANSI C 3rd ed. Tata McGraw-Hill [

Wilde, N. (1990). Understanding Program dependencies. Available on;

http://www.sei.cmu.edu/library/abstracts/reports/90cm026.cfm

Briscoe, T. (2011). Introduction to Formal Semantics for Natural Language. Available on
http://www.cl.cam.ac.uk/teaching/1011/L107/semantics.pdf

Schroeder, Mark. (2011). Is semantics formal? Available on: http://www-

bcf.usc.edu/~maschroe/research/Schroeder_Is_Semantics_Formal.pdf

Schroeder, M. (2008). Being For: Evaluating the Semantic Program of Expressivism.

Oxford: Oxford University Press

Müller, P. (1997). Introduction to Object-Oriented Programming Using C++. Available on

http://www.tiem.utk.edu/~gross/c++man/

