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ABSTRACT 

Compared with conventional structural plates, the pronounced role of instability 

complicates the behaviour of thin-walled plates. In this study, the stability of in-plane 

loaded CCCC thin-walled rectangular plate was investigated. The study involved a 

theoretical formulation based on Taylor-McLaurin series as shape function and 

implemented through application to Ritz method. In deriving the shape function, 

Taylor-McLaurin series was truncated at the fifth term, which satisfied the boundary 

conditions of the plate and resulted to a particular shape function for CCCC plate. 

The shape function was then substituted into the total potential energy functional, 

which was subsequently minimized to get the stability equations. Derived Eigen-value 

solver was used to solve the stability equation for CCCC plates various aspect ratios 

to get the buckling loads. The buckling loads from this study were compared with 
those of earlier researchers and the average percentage difference recorded for 

CCCC plate was 3.54%. This difference shows that the shape function derived from 

Taylor-McLaurin series has rapid convergence and is a very good approximation of 

exact displacement function of the deformed thin-walled rectangular plate under in-

plane loading. 

Keywords: Instability; Thin-walled Plates; Taylor-Mclaurin Series; Total Potential 

Energy Functional; Eigen-Value Solver; Critical Buckling Load 

INTRODUCTION 

The critical buckling load of a rectangular plate is usually given as		(Nx)�� =			
	π��� .		 In this 

expression, H is the coefficient, D is the flexural rigidity of the plate and b is the length of the 

loaded edge. The value of H is dependent on the aspect ratio a/b. Earlier scholars have used 

Euler (equilibrium) approach, energy approach and numerical approach in analyzing plates 

clamped at all the four edges (CCCC – plates). (Levy, 1942) used an infinite series as shape 

function in equilibrium approach and obtained H for a square thin rectangular plate for first 

buckling mode to be 10.07. (Timoshenko, 1936), used trigonometric series as shape function 

in energy approach and got H for a square thin rectangular plate to be 9.362. Iyengar (1988), 

used the variation of total potential energy method, and assumed a shape function, W= A (1- 

Cos2πR) (1- Cos2πQ), where 	� = � �⁄ ���	� = � �� , to analyze the plate. He obtained H for 

a square thin rectangular plate to be 10.667. The difference between these solutions from 

various approaches and the use of different shape functions calls for further study. This is to 

ascertain the solution that could converge close to the exact solution. In the use of 

trigonometric series, single Fourier series or double Fourier series could be used. However, 

their convergence is slow. This is why Krylov (1949) proposed an efficient method for 

sharpening the convergence of the Fourier series. Kantorovich and Krylov (1954) also 
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presented solutions of plate by approximate methods of higher analysis. They made use of 

Fourier series in these approximate methods. Many other researchers like Nadai (1925), 

Timoshenko and Woinowsky-Krieger (1959), Iyenger (1988), Ye (1994), Ugural (1999), 

Ventsel and Krauthammer  (2001) and Eccher, Rasmussen and Zandonini (2007) also used 
Fourier series in their work.  

It is of important note that previous scholars have extensively used trigonometric series in 

energy approach. Use of Taylor series has attracted very little attention and has not been used 

to estimate shape functions for use in energy approach for analyzing CCCC plate. Thus, this 

paper used Taylor-Mclaurin’s series to solve the problem of a CCCC plate and subject to in-

plane load in one axis (X - axis) of the principal plane (figure 1.). 

 

 

 

 

 

Figure 1: schematic representation of in-plane loaded CCCC plate 

TOTAL POTENTIAL ENERGY FUNTIONAL FOR THIN PLATE BUCKLING 

Ibearugbulem (2011) derived the total potential energy functional for a rectangular thin 

isotropic plate subjected to in-plane load in x-direction as follows: 

∏� = Db2a� 	 !"w′′$%& + a
(
b( 	"w′′)%& + 	2 a

&
b& 	"w′′$)%& + 2µ a

&
b&w′′$. w′′)

− 	2µ a&b& 	"w′′$)%&+ ∂R ∂Q − bN�2a  "w′$%& ∂R∂Q.																(1)							 
Where “a” and “b” are plate dimensions in x and y directions. µ is Poisson’s ratio. Nx is the 

in-plane load in x direction. D is flexural rigidity. W is the shape function.  

∏� = total	potential	energy	functional	along	x	axis; 		R = xa ; 			Q	 = yb ;		 0 ≤ � ≤ 1; 	0 ≤ 	� ≤ 	1	(�	���	�	�AB	�CDB�ECF�GBEE	HI��JCJCBE	). 
KL
KM = NO 	KLKP 	= 	 NOQ′P 	 ;  K�LKM� = NO� 	K�LKP� 	= 	 NO�Q′′P 	;  KLKR = NS 	KLKT 	= 	 NS 	Q′T 

K�L
KR� = NS� 	K�LKT� 	= 	 NS�Q′′T	;    K�LKMKR = NOS 	 K�LKPKT =	 NOSQ′′PT	. 
If the chosen shape functions is a good approximation of the exact shape function, then  U U Q′′P . 	Q′′T	V�V�			NWNW −	U U (Q′′PT)&	V�V�		NWNW 	≈ 0  
(Ventsel & Krauthammer, 2001), (Ibearugbulem, 2011). Thus, equation (1) becomes: 

∏� 	= D2b& 	Y Y Zb
�
a� "w′′$%

& + ab	"w′′)%& +	2ba 	"w′′$)%&[ ∂R ∂Q			
N
W

N
W
−	bN�2a Y Y (w′$)& 	∂R ∂Q.		

N
W

N
W 																																												 (2) 

P = a / b 
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SHAPE FUNCTION FROM TAYLOR-MCLAURIN’S SERIES 

Ibearugbulem (2011) assumed the shape function, w to be continuous and differentiable. He 

expanded it in Taylor-Mclaurin series and got: 

w = w(x, y) = 	 \ \F(^)(xW). F(_)(yW)m! n! 	(x − xW)^. (y − yW)_																						(3)
∞

_cW

∞

^cW
 

WhereF(^)(xW)	is	the	mth	partial	derivative	of	the	function	w	with	respect	 
to	x	and	F(_)(yW) is the nth partial derivative of the function w with respect to y.  m! and n! 
are factorials of m and n respectively. x0 and y0 are the points at the origin. He took the origin 

to be zero. After some modification of equation (1) and noting that x = a . R and y = b . Q, he 
truncated the infinite series at m = n = 4 and got: 

w	 = 	\\J^	K_		R^. Q_
(

_cW
		

(

^cW
																																																																												(4) 

Where	J^ = 				 F(^)(0) ∗ a^m! 			and	K_ =	F(_)(0) ∗ b_n!  

The boundary conditions for CCCC plate are  

w(R = 0) =	w′$(R = 0) = 	0																																																																										(5) 
w(R = 1) =	w′$(R = 1) = 	0																																																																										(6) 
w(Q = 0) =	w′)(Q = 0) = 	0																																																																										(7) 
w(Q = 1) =	w′)(Q = 1) = 	0																																																																										(8) 
Substituting equations (5) and (7) into equation (4) gave: 

 JW = 0 ; JN 		= 0	; KW 	= 			0 ;  KN = 		0 
Also, substituting equation (6) into equation (4) and solving the resulting two simultaneous 

equations gave: 

J& = J(; J� =	−2J( 
Similarly, substituting equation (8) into equation (4) and solving the resulting two 

simultaneous equations gave: 

						K& =		K(;   K� = 	−2K( 
Substituting the values of JW, JN	, J& , J�	, J(	, KW	, KN	, K&	, K�	and	K(	 into equation (4) gave 

w = (R& − 2R� +	R()	(Q& − 2Q� +		Q()J(K(. That is 

w = A(R& − 2R� +	R()	(Q& − 2Q� +		Q()																																																		(9) 
Where		A	 = 		 J(K(		 
APPLICATION OF RITZ METHOD 

Partial derivatives of equation (9) with respect to either R or Q or both gave the following 

equation: 

w′$ = A(2R − 6R& +	4R�)	(Q& − 2Q� +		Q()																																											(10)							 
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w′′$ = A(2 − 12R + 12R&)	(Q& − 2Q� +		Q()																																											(11)						 
w′) = A(R& − 2R� +	R()	(2Q − 6Q& +		4Q�)																																										(12)							 
w′′) = A(R& − 2R� +	R()	(2 − 12Q+ 12Q&)																																												(13)						 
w′′$) = A(2R − 6R& +	4R�)	(2Q − 6Q& +		4Q�)																																					(14)								 
Integrating the square of these five equations partially with respect to R and Q in a closed 

domain respectively gave: 

Y Y "w′$%& ∂R∂QN
W =N

W 		0.00003A&																																																										(15) 
Y Y "w′′$%& ∂R∂QN

W =N
W 		0.00127A&																																																								(16) 
Y Y "w′)%& ∂R∂QN

W =N
W 	0.00003A&																																																								(17) 
Y Y "w′′)%& ∂R∂QN

W =N
W 	0.00127A&																																																								(18) 
Y Y "w′′$)%& ∂R∂QN

W =N
W 		0.00036A&																																																				(19) 

Substituting equations (15), (16), (18) and (19) into equation (2) gave: 

∏� 	= DA&2b& 	r0.00127P� + 0.00073P + 0.00127Pt −	N�A&2P (0.00003)			(20) 
Where	the	aspect	ratio, P = ab																																																																						 (21) 
Minimizing equation (20) and solving the resulting eigen-value equation gave: 

N� = 	r4.255P& + 	2.428 + 4.255P&t π
&Db& 																																																								 (22) 

That is to say 

N� 	= Dπ&b& . H																																																																																																									(23) 
wher	H =	 r4.255P& + 	2.428 + 4.255P&t																																															(24) 
RESULTS AND DISCUSSION 

The H values from this paper and those from Iyengar (1988) were presented and compared on 
table 1. 

Exact solution from Iyengar (1988) was 

(N�)�� = 	D	π&b& 	vM
&
p& + P

&
M& + 2x	 

Where M is the buckling mode. In this case it is the first mode. That is M = 1, then we have 
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(N�)�� = 	D	π&b& 	r 1P& + P& + 2t	 
The values of H for different aspect ratios are shown on table 1. Here, average percentage 

difference between this study and Iyenger (in this case solution from trigonometric function, 
table 1) is 3.538%. This is an upper bound approximation. It would also be noticed that the 

closeness of the two solutions improves as the aspect ratio increases from 0.1 to 1.0, given 
the corresponding percentage difference from 5.528% to 1.978%.  This meant that the 

solution from this present study was a close approximate of the exact solution if it is assumed 
that solution from trigonometric functions are close to exact solution. Hence, the assumed 

deflection function was close to the exact shape function. Furthermore, (Levy,1942), used an 

infinite series to get H for CCCC plate with aspect ratio of 1.0 as 10.07. However, H from 

this study is 10.878. This is an upper bound solution in comparison with Levy’s solution. The 

average percentage difference was 8.024%. It would be nice to know that Iyenger’s solution 

differs from Levy’s by 5.929%. These differences are quite acceptable in statistics as being 

close. It went further to affirm the good approximation of the shape function using finite 

power series. However, it is not yet certain which of the solutions (Iyenger or Levy) is closer 

to the exact solution. 

Table 1. H values for different aspect ratios for CCCC Thin plate buckling 

ASPECT RATIO, 

P = a/b 

H from IYEENGAR 

(1988) 

H from PRESENT 

STUDY 

PERCENTAGE 

DIFFERENCE 

0.1 402.707 424.970 5.528 

0.2 102.827 108.222 5.247 

0.3 47.471 49.753 4.806 

0.4 28.307 29.510 4.251 

0.5 19.667 20.384 3.647 

0.6 15.218 15.685 3.069 

0.7 12.790 13.121 2.583 

0.8 11.477 11.734 2.235 

0.9 10.845 11.066 2.038 

1 10.667 10.878 1.978 
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