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ABSTRACT 

In this study, Taylor series peculiar shape functions for CCCC isotropic thin 

rectangular plates were used on Galerkin’s functional to determine the fundamental 

frequency of the plate under vibration. The study involved a theoretical derivation of 

peculiar shape function by applying the boundary conditions of the plate on Taylor 

series form of the plate equation. This initial result of the formulation was substituted 

on Galerkin’s functional to obtain equation for the fundamental frequency of the free 

vibrating plate. Non – dimensional frequency parameter “k” was determined for 

different aspect ratios from 0.1 to 2.0 at an incremental rate of 0.1 respectively. The 

effectiveness of this method was demonstrated by comparing the solution obtained in 

the present study with existing approximate solution obtained from previous studies. 

The result as contained in table 2 show differences ranging from -0.0475% to 

6.0557% which are acceptable in statistics. Thus, we can conclude that the present 

method is a good approximate method for analyzing plates in vibration. 

Keywords: Boundary Conditions, Free Vibration, Fundamental Natural Frequency, 

Galerkin’s Functional, Peculiar Shape Function, Taylor Series 

INTRODUCTION 

Vibrations are mechanical oscillations about an equilibrium position. Most of the time, the 
vibration of mechanical/structural systems are undesirable and eliminating or controlling 

vibrations may save human lives. Plates are structural elements that are frequently subjected 
to vibration and controlling the frequency at which plate vibrates is very important to 

structural designers. Free vibration analysis of thin rectangular plates that are clamped on all 
edges have been studied by many researchers in the past with the aim of calculating it’s 

natural frequencies and this they have done using numerical approaches (Lee, (2004); Shi, 

(1990); Werfalli and Karoud, (2005) and Misra, (2012)) and energy variational methods (Lal 

et al, (2009); Shu et al, (2007); Sakata et al, (1996)). None of the existing solutions from past 

works used Taylor series formulated shape functions. It is worth mentioning that their 

approaches are very rigorous. The free vibration of thin plates is characterized by a fourth 

order partial differential equation and getting exact solutions for thin plates with all edges 

clamped might be difficult. This may be the reason why most of the reported solutions in 

literature were based on numerical and variational methods. The Galerkin’s method is a very 

powerful, easy to comprehend and effectively relevant to the spectrum of engineering 

problems. The main purpose of this present study is to use the Taylor series formulated shape 

function in the Galerkin’s functional to analyze free vibration of thin rectangular isotropic 

plate that is clamped on all its edges (CCCC). 

GOVERNING DIFFERENTIAL EQUATION FOR THIN PLATE IN VIBRATION 

The equation that delineates the flexural vibration of thin isotropic rectangular plates was 

derived by Njoku (2013) from the principles of the theory of elasticity and expressed as 
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 + ���(�,�	��� 	 = ��λ
�(�,�																																																										(1	 
Where w is displacement in positive z – direction, ��  is the mass per unit area of the plate,λ is 

the fundamental natural frequency. The flexural rigidity is expressed as 													�
= �ℎ�12(1 − �																																																																																																																														(2	 

E = modulus of elasticity, h = plate thickness, � = Poisson’s ratio. 

Equation (1) can be represented in the form expressed as 

∇��(�,�	 −��λ
�(�,�	 = 0																																																																																														(3	 
�ℎ���	∇�= Biharmonic	differential	operator	and	��λ
 = -.��/-0	12�3�	 

∇�= ���
� + 2���

��
 	+ ����� 																																																																																																		(4	 
GALERKIN’S FUNCTIONAL FORMULATION 

Ventsel and Krauthmmer (2001), gave Galerkin’s expression as  

567(89	 − :;	1<(
, �		 =
=� = 0																																																																																				(5	 
Expanding equation (5), we have, 

5?7(89	1<(
, �	@ =
=� −5?:. 1<(
, �	@=
=� = 0																																																	(6	 
Where L (WN) is equal to �∇�w, F is inertia force and fi(x,y) is the trial function.  

Substituting equation (3) into equation (6), we have,  

�5(∇��	1<(
, �	 =
=� − ��λ
51<	(�,�	 =
=� = 0 = D																																										(7	 
In dimensionless co-ordinate system of R – Q axes, equation (7) can be expressed as  

D = 0 = F�0
 5GH��1<	(�,�	�I� . 1<	(�,�	 + 2��1<	(�,�	H�I
�J
 . 1<	(�,�	 + ��1<	(�,�	H��J� . 1<	(�,�	K �I�J
− FH0
λ
�� 51<(�,�	
 �I�J																																																																				(8	 

Where P is aspect ratio, R and Q are non-dimensional axis parallel to x and y axis 

respectively. 

														H	 = 	 M 0,N 		I = 
 0	⁄ 	J = � M	N and	W = A. 1<		
Equation (8) is the Galarkin’s functional in dimensionless parameters R & Q, and aspect ratio 
P = b/a. 

CCCC PLATE BOUNDARY CONDITIONS 

Defection and slope vanishes along the clamped edges. Figure 1 shows a rectangular plate 

that is clamped on all edges in dimensionless co-ordinate system. 

R 

1 
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Figure 1: CCCC plate in dimensionless co-ordinate system of R – Q axes 

 CCCC plate’s boundary conditions are: �(I = 0	 = �RS(I = 0	 = 0																																																																																						(9	 �(I = 1	 = �RS(I = 1	 = 0																																																																																					(10	 �(J = 0	 = �RU(J = 0	 = 0																																																																																					(11	 �(J = 1	 = �RU(J = 1	 = 0																																																																																					(12	 
Where � ′U & � ′S 	are the first derivative of the displacement functions in Q and R axis 

respectively. 

TAYLOR SERIES FORMULATED SHAPE FUNCTION 

Ibearugbulem in 2012, using Taylor Mclaurin’s series formulated the general shape function 

for thin rectangular plates as; 

� = V V0WMXIWJX�
XYZ

�
WYZ

																																																																																													(13	 
Substituting equations (9) and (11) into equation (13) we have:  	0Z = 0	;	0\ = 0	;		MZ = 0	;		M\ = 0	 
Also, substituting equation (10) into equation (13) and solving the resulting two simultaneous 

equations we have: 0
 = 0�	0.=	0� = −20� 

Similarly, substituting equation (12) into equation (13) and solving the resulting two 

simultaneous equations, we have: M
 = M�	0.=	M� = −2M� 

Substituting the values of 0Z, 0\ , 0
 , 0� , 0� , MZ , M\, M
 , M�, 0.=	M� into equation (13) gave a 

peculiar shape function for CCCC plate as  8 = (I
 − 2I� + I�	(J
 − 2J� + J�		0�M� = F. 1\																																								(14	 
Where:    1\ = (I
 − 2I� + I�	(J
 − 2J� + J�					0.=		0�M� = F																																	(15	 
FORMULATION OF THE FUNDAMENTAL NATURAL FREQUENCY EQUATION 

FOR CCCC PLATE 

If 1\ = 1< in equation (8), the partial derivatives of equation (15) with respect to R or Q or 

both gave the following equations, 

(M		
Q 

1 
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	��1\�J� = 24(I
 − 2I� + I�																																																																																								(16	 
��1\�I� = 24(J
 − 2J� + J�																																																																																									(17	 
��1\�I
�J
 = 4(1 − 6I + 6I
	(1 − 6J + 6J
																																																									(18	 

��1\�I� . 1\ = 24(I
 − 2I� + I�	(J� − 4J] + 6J^ − 4J_ + J`																								(19	 
��1\�J� . 1\ = 24(J
 − 2J� + J�	(I� − 4I] + 6I^ − 4I_ + I`																								(20	 
��1\�I
�J
 . 1\	 = 4(I
 − 8I� + 19I� − 18I\] + 6I^	(J
 − 8J� + 19J� − 18J\]

+ 6J^																																																																																																			(21	 
1<
 = (I� − 4I] + 6I^ − 4I_ + I`	(J� − 4J] + 6J^ − 4J_ + J`													(22	 

 

Integrating them partially with respect to R and Q gave the following: 

aa��1\�I�
\

Z

\

Z
. 1\�I�J = 0.00127																																																																																				(23	 

aa��1\�J�
\

Z

\

Z
. 1\�I�J = 0.00127																																																																																				(24	 

aa1\

\

Z

\

Z
�I�J = 0.0000025195																																																																																(25	 

aa ��1\�I
�J

\

Z

\

Z
. 1\�I�J = 0.00036																																																																													(26	 

 

Substituting equations (23), (24), (25) and (26) into equation (8), we have: 

  
bcde f0.00127H + Z.ZZZ_
g + Z.ZZ\
_gh i = FH0
j
(0.0000025195��																			(27	 

Making j
 the subject of the gave 

λ

 = �H0��� k504.0683H + 285.7143H + 504.0683H� l																																											 (28	 

Let			K
 = k504.0683 + 285.7143H
 + 504.0683H� l																																																(29		 
K is the non-dimensional frequency parameter. 
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 We have:  																	λ
= K0
 	 ∗ p��� 																																																																																																																					(30	 

Equation (30) is the fundamental natural frequency equation for CCCC plate for aspect ratio 

P = b/a. 

RESULTS AND DISCUSSION 

The non-dimensional frequency parameter, ‘K’ was computed for aspect ratios ranging from 
0.1to 0.2 at increment of 0.1 as presented in table 1. This was done by substituting these 

values respectively into equation (29). In order to validate the solutions of this present study, 
comparison was made with solutions from previous research works [( Liew et al (1995), 

Sakata et al (1996) and Chakraverty (2009)] as shown in table 2. 

Table 1. Non-dimensional frequency parameter (K) for aspect ratios from present study (P = 

a/b) 

P K 

0.1 2251.6139 

0.2 568.059 

0.3 256.7293 

0.4 148.2576 

0.5 98.5507 

0.6 72.0229 

0.7 56.4507 

0.8 46.7035 

0.9 40.3132 

1.0 35.9709 

1.1 32.9322 

1.2 30.7508 

1.3 29.1488 

1.4 27.9479 

1.5 27.0305 

1.6 26.3175 

1.7 25.7547 

1.8 25.3039 

1.9 24.9381 

2.0 24.6377 
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Table 2. Non-dimensional frequency parameter (K) of thin rectangular plates with all edges 

clamped (CCCC) for aspect ratio of b/a 

P 
Present 

study 

L
ie

w
 e

t 
al

 

(1
9

9
5

) 

S
ak

at
a 

et
 a

l 

(1
9

9
6

) 

C
h

ar
k
ra

v
er

ty
 (

2
0
0

9
) % Difference 

b/w  liew et 

al(1995) and 

present study 

% Difference 

b/w sakata et 

al(1996) and 

present study 

% Difference 

b/w 

charkraverty et 

al(1995) and 

present study 

0.4 148.2576 147.7677 - _ 0.3315 - - 

0.5 98.5507 - 95.391 98.317 - 3.3124 0.2378 

0.6 72.0229 71.9139 - - 0.1516 - - 

1.0 35.9709 - 33.917 35.988 - 6.0557 -0.0475 

2.0 24.6377 - 23.848 - - 3.3114 - 

Comparing the present solution with the solution given by Chakraverty (2009) for aspect 

ratios of 0.5 and 1, it was found that the present solutions are very close to Chakraverty 

(2009) solutions as the percentage differences between them are 0.2378% and −0.0475% 
respectively. Also the percentage difference between the solutions given by Liew et al (1995) 

and the present solutions for aspect ratios 0.4 and 0.6 are 0.3351% and 0.1516% which means 

that their solutions are close to one another. Hence, from these two comparisons, it can be 
seen that the assumed shaped function is close to the exact shape function for a plate that is 

clamped on all edges however, the solution given by Sakata et al (1996) for aspect ratio of 1 
gave the highest percentage difference of 6.0557% when compared with that from present 

study, but this is also within the acceptable range in statistics. Hence, we can conclude that 
the present method is a good approximate method for analyzing plates in vibration. 
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