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ABSTRACT 

This paper studies the dynamic stresses and deformation of stiffened conical shell and 

compared between the steady state and transient analysis. The same conical shells used in 
static analysis of conical shell were taken with suddenly applied pressure. The element used is 

a modified eight-node superparametric shell element. The effects of the number and cross-

section area of stiffened shell are analyzed. The results are compared with available research 

and MSC\NASTRAN. 
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INTRODUCTION  

The dynamic response of cylindrical and conical panels subjected to arbitrary time-varying load 

distributions was studied and appropriate equations were presented by Ross and Praise (Rossettos, 

1969). Convenient trigonometric series were used, in conjunction with finite-difference methods, to 

reduce the governing equation to sets of matrix equations. The numerical solution procedure involves 

time integration using a Gaussian elimination technique particularly suited to the banded matrices 

involved. Calculated results treat the effects of conicity and various support conditions on the 

structural response. Individual cases show quantitatively how cylindrical panel response is more 

sensitive than that of conical panels to changes in edge restraint (Mannan et al., 2009). 

Dynamic analysis of stiffened conical shell was presented (Srinivasan, 1989). By using an integral 

equation method in the space domain. The smearing technique was used for closely spaced stiffeners. 

The time domain analysis had been done using the mode super position method. The effect of 

eccentricity of stiffeners, varying the cross-sectional dimensions and spacing of the stiffeners had been 

studied. The application of integral equation technique to dynamic response problem has been 

illustrated by considering the layered conical shell panel, which was introduced (Srinivasan, 1989). 

The method consists of using the integral equation technique in the space domain and direct 

integration using the Wilson-Theta method in the time domain since results were not available for 

layered conical shell panels. 

This element consists of four corner and four mid side nodes. The nodal degrees of freedom 

considered are the three translations u, v, w of the mid surface and two rotations α and β of the normal 

to the mid surface. The Cartesian coordinates of any point of the shell and the curvilinear coordinates 

can be written in the form: 

     ∑ ∑
















+

















=

















h

n

m

l

N

z

y

x

N

z

y

x

i

i

i

i

middlei

i

i

i

3

3

3

2

ζ
                                                                    (1) 

Where: 

l3i, m3i and n3i are the direction cosines of the normal to the middle surface. Here Ni  is a function 

taking a value of unity at the node i and zero at all other nodes, it is called as "shape function ". 

In the kinematics formulation two assumptions are imposed: 
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1. Nodal fiber is inextensible. 

2. Only small rotations are considered. 

The displacements at any point (ξ, η, ζ) can be expressed in terms of the nodal displacements as  
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In this formula the symbol µi denote the following matrix: 
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Column 1 in this matrix contains negative values of the direction cosines of the second tangential 

vector. The displacement shape functions may be cast into the matrix form: 

 [Ni]=[NAi]+ζ [NBi]     ( i=1,2…8)                                                                               (3)  
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The 3 X 3 Jacobian matrix required in this formulation is: 

 [J]= 
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Where “,” indicate differentiation with respected to the symbol following the coma. 

The derivatives in matrix [J] can be found from Eq. (1) 
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               And so on

 

 

For this element, six types of non-zero strains exist, as follows: 
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The stress-resultant vector in the local coordinate system is, 

{N′}={N x′  N y′  N x′y′  Q y′  Q x′   M x′  M y′   M x′y′  }
T
                                                (7) 

Where : 
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Q y′  Q x′  : the shear stress per unit length in the x and y direction. The relationship between the stress 

resultants and the generalized strains can be stated as follows: 

{N′}=[D′]{ε′}                                                                                                               (8) 

 Where: 

[D′] : the rigidity matrix. A typical rigidity matrix for flat plate shell is given by: 
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k : shear shape factor (assumed k=1.2 for rectangular sections) (Hearn, 1985). 

If the spacing of the stiffeners is uniform and they lie along the natural coordinate directions, 

equivalent shell rigidities can be obtained by merging the stiffener rigidities with those of the shell. 

Fig.3 shows a shell of thickness t with eccentric stiffeners in ξ and η directions at intervals sξ and  sη  
respectively (Hearn, 1985).The kinematics relations between the displacements at the rib centroidal 

axis and those at the shell midsurface are given in the coming Eq. (10), in which all the displacements 

are along the coordinate system  x′,y′,z′ defined at the point under consideration, with z′ along the 
thickness of the shell, x′ tangential to the stiffener along the  ξ direction, and y′ tangential to the 

stiffener along η direction. 

For  ξ rib:   wrx′ =w′   ,  urx′ =u’ + e ξ (∂u′/∂ z′)                                                       

 (10a) 

For  η rib:   wry′ =w′   ,  vry′ =v′ + e η(∂v′/∂z′)                                                          

 (10b) 

Here u′, v′ and w′ are the displacements at the shell midsurface and e ξ , e η are the eccentricities of the 
stiffeners. 

 The stress resultants and strains of the ξ- direction rib are: 

    {Nx′}r =1/h {Nrx′  Qrx  Mrx  Trx′}
T
                            

    {εx′}r   =1/h {εrx′    γrx′z′   χrx′     ∂θrx′/∂x′}.                                                                 
 (11) 

In which Nrx′ ,Qrx′ ,Mrx′  and  Trx′   are the axial force, shear force, bending moment and tensional 

moment respectively. The same relation in η- direction rib exit. The relation between stiffener strains 
and shell strains are given by: 

  εrx′ =εx′O +eξ χx′  

        χrx′ =χx′ 

        γrx′z′ =γz′x′O                                                                                                               (12) 

            ∂θrx′ /∂x′ =1/2 χ x′y′ 

Similar expressions can be written for η- direction stiffeners. These relations for both sets of stiffeners 

may be expressed in matrix form as: 

       {ε′}r =[T]{ε′}                                                                                                      (13) 

Where: 
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[T] is a transformation matrix. The stress resultants in terms of strains can be written for both sets of 

stiffeners together as: 

        {N′}r =[D′]r{ε′}r                                                                                                (14) 

The various matrices in  Eqs. (13) & (14) are given by: 

  {ε′}r ={εrx′  εry′  γrx′y′  γry′z′  γrz′x′  χrx′   χry′   χrx′y′ }
T
                                                      (15) 

   {N′}r={Nrx′  Nry′  Nrx′y′  Qry′  Qrx′  Mrx′  Mry′  Mrx′y′}
T                                                  (16) 
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In Eq. (18), E, G, A, S, I and J  respectively denote Young’s modulus, shear modulus, cross sectional 
area, shear area, moment of inertia and torsional inertia of the ξ, or η-  direction stiffener as indicated 

by the subscript. In Eq. (16), the quantity  Mrx′y′  gives the sum of the torsional moments of both the 
stiffeners. If the stiffener rigidities are uniformly distributed over the spacing of the stiffeners to obtain 

equivalent rigidities over the shell midsurface, then from Eqs.(13) & (14), the strain energy of the 

stiffeners can be obtained as, 

{ } [ ] [ ] [ ]{ } AdTDT r

TT

r ∫ ′′= εε
2

1
U                                                                              (19) 

in which  [D]r  is obtained by dividing the rigidity terms corresponding to ξ- ribs by  sξ  and those 

corresponding to  η-  ribs by sη  in [D′]r .  

The total strain energy of the stiffened shell is then given by, 

{ } [ ]( { } { } [ ] [ ] [ ]{ })dATDTD r

TTT
εεεε ′′+′′′= ∫2

1
U                                                          (20) 

This is equivalent to the behavior of a homogeneous shell with equivalent rigidity matrix [Deq] given 

by. 

[ ] [ ] [ ] [ ] [ ]TDTDD r

T

eq +′=                                                                                            (21) 

The stiffened shell then can be analyzed as a homogeneous shell using the element described earlier. 

To automate the stiffener spacing calculations, the following method can be implemented. Let nξ be 
the number of ξ- direction stiffeners and nη is the number of  η-direction stiffeners within the element. 

At a Gauss point, the following two values are computed: 
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in which  J’s  are the coefficients of the Jacobian matrix. Effectively S1 gives the dimension of the 

element along η-direction and S2 gives the dimension along ξ- direction at that Gauss point. Thus, 
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The kinetic energy  T  of  structure is 

}{}{}{}{
2

1
qdVNNqT

V

TT && ∫= ρ                                                                                  (24) 

Where: 

[ ] [ ] [ ] dVNNM
V

T

∫= ρ                                                                                            (25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5.28) Variation of w-displacement

 with time step
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Fig.1: Fig. (5.29) Variation of stresses
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Fig. (5.30) Variation of w-displacement

 with thickness
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Fig.3: Fig. (5.31) Variation of meridional stresses
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Fig. (5.32) Variation of meridional stresses

 with number of stiffeners(string)
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Fig.5: Fig. (5.33) Variation of meridional stresses

 with number of stiffeners(string)
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Fig. (5.34) Variation of meridional stresses

 with number of stiffeners(ring)
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Fig.7: Fig. (5.35) Variation of meridional stresses

 with number of stiffeners(ring)
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Fig. (5.36) Variation of w-displacement

 with the cross-sectional area
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Fig.9: Fig. (5.37) Variation of meridional stresses

 with the cross-sectional area

0

2

4

6

8

10

12

0.00E+00 4.00E-04 8.00E-04 1.20E-03 1.60E-03

Cross-sectional area(m^2)

M
e

ri
d

io
n

a
l 
s

tr
e

s
s

e
s

(M
p

a
)

Static

Dynamic

MSC\NASTRAN(static)

MSC\NASTRAN(dynamic)

Fig.10: 



Part-I: Natural & Applied Sciences 

 

ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol.  3,  No. 3,  November 2012 

 

Copyright © 2012 SAVAP International 

www.savap.org.pk 

www.journals.savap.org.pk 

33 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

The conclusions obtained from the present analysis can be summarized as follows: the thickness 
conical shell is effect on the stresses and deformation. The stiffeners are reducing the strength-to-

weight of the conical shell. The shape of the stiffeners (L-section) is greater effect on the bending and 
torsion resistance from the other section. Increment in the cross-sectional area of stiffener results 

reduces in the stresses and deformation. The rings have greater effect than the stringer on the conical 
shell, where the bending curvature is so much larger in the circumferential than the axial direction. The 

angle of the cone causes the higher stresses and larger deformation when it's reduced. It can be seen 

that the super parametric shell element gives a good results in such static analysis and dynamic 
analysis for stiffened conical shell. The results taken from the dynamic response is higher than static 
analysis.   
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Fig. (5.38) Variation of w-displacement

 with the angle of cone
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Fig.11: Fig. (5.39) Variation of meridional stresses
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