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ABSTRACT 

In the literature, there are many efficient metaheuristic algorithms for optimizing real-valued 

objective functions. In this work, Particle Swarm Optimization (PSO) algorithm, Differential 

Evolution (DE) algorithm and Harmony Search (HS) algorithm are compared on the basis of 

speed of convergence of the algorithms. In order to achieve this goal, a set of benchmark 

functions that have different characteristics are used. 

Keywords: Optimization Algorithm, Differential Evolution Algorithm, Particle Swarm 

Optimization, Harmony Search Algorithm. 

INTRODUCTION 

Many different metaheuristic optimization algorithms have been developed for the optimization of 

real-valued problems.  These algorithms have attracted the interest of researchers because of their 

ability to reach to the global optimum without finding a good starting point or without requiring 

gradient information.  In order to test the performance of these algorithms, many different bechmark 

functions are tested in the literature (Karaboga & Akay, 2009). These functions are classified as 

unimodal (U) or multimodal (M) and also they can be separable (S) or non-separable (N) functions. 

In this paper, 22 benchmark functions are used in order to compare the speed of convergence of the 

PSO, DE and HS algorithms.  These functions are selected in such a way that they are mainly forming 

four different characteristic groups which are Unimodal and Separable (US), Unimodal and Non-

separable (UN), Multimodal and Separable (MS), and lastly Multimodal and Non-separable (MN). 

The origin of Particle Swarm Optimization has involved anologues of birds flocks searching for corn 

and it has been developed to be a powerful optimization algorithm (Kennedy & Eberhart, 1995).   In 

this algorithm, the entities, which are called particles, are placed in the search space and by the 

movement of these particles, according to some aspect of history information, the aim is to move close 

to an optimum of the function. 

The Harmony Search algorithm is based on the usage of natural musical performance processes in 

order to search for a perfect state of harmony (Lee & Geem, 2005).  This idea is very similar to the 

optimization process that aims to find a global solution with several same processes. 

Differential Evolution algorithm is a population-based algorithm that has mutation, crossover and 

selection operators. This algorithm has been shown to be one of the very efficient methods of finding 

the global optimum of real-valued functions (Storn & Price, 1997). 

In the next section, we briefly explain the 3 algorithms used for optimizing the selected benchmark 

functions.  

DIFFERENTIAL EVOLUTION ALGORITHM 

Differential Evolution (DE) algorithm is a metaheuristic method which converges to the global 

optimum fast. It was proposed by Storn (Storn, 1996) and became popular by many researches in 

various fields for solving optimization problems. DE algorithm is a population based algorithm and in 
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despite of the initial values of the population it can approach to the optimal solution with the help of 

few parameters. Parameters are used to control the search space. 

DE algorithm’s steps are similar with the steps of Genetic Algorithm (GA). Mutation, crossover  and 
selection are the similar operators that are used in DE algorithm and GA. The population in DE is 

developed by applying the above operators.  

The general steps of DE is explained as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F is a random number in the range (0,2) which is called ‘differential weight’ and CR is a random 

number in the range (0,1) and it is called ‘crossover probability’.  The selection of F, CR and the 

dimension of the function effects the performance of DE.  

In this paper, different values of parameters are selected in order to have a good performance. Price 

and Storn denotes the importance of selection of parameters in performance of DE algorithm (Storn & 

Price, 1997). 

PARTICLE SWARM OPTIMIZATION ALGORITHM 

Particle Swarm Optimization (PSO) is a metaheuristic algorithm developed by Kennedy and Eberhart 

(Kennedy & Eberhart, 1995). It is inspired by the behaviour of bird or fish swarms. The potential 

candidates are called particles and PSO relies on moving the particles towards the best solutions in the 

search space (Shi &Eberhart, 1998).  PSO can be optimized using the following parameters c1, c2, and  
ω.  The term c1 is called cognitive parameter, and c2 is the social parameter and ω is called inertia 

weight. νmin and νmax  can be used as a constriction parameters that define the maximum positions in 

the search space. Combination of these parameters enables to approach the optimal solution rapidly 
(Shi & Eberhart , 2000). 

Each particle in the search space moves with some given parameters and formula. Particles move with 

respect to their own best position (Pbest) and the swarm’s best position (globalbest). When a better 
position is being discovered by a particle, all particles try to improve their positions to this better 

position.  

The main steps of the PSO algorithm are given as follows: 

a. Initialize the particles χi with initial random positions in search space. 

b. Initialize the velocities of particles νi  in a given range randomly. 

c. Initialize the best known positions (Pbest) of each particle. 

d. Define the objective function  f which is need to be optimized. 

 

   Initialize the candidate solutions χi with random places in search space. 

   Define the objective function f which is needed to be optimized. 

Repeat 

      Pick randomly three values called a, b and c in which they are distinct  from the 

current candidate. 

      Mutant vector  νi is generated using the a, b, c and F parameters. 

      For each candidate χi, pick a uniformly distributed number r. 

        Candidate solutions and mutant vector   νi  is used to perform a trial vector Ưi. 

                    If; r≤CR  Ưi=  νi     

                    Otherwise; Ưi=χi 

                 If f(Ư)<f(χ); replace the current candidates with the new positions of 

candidates. 

Until termination criteria is met 

` 

mutation 

selection 

crossover 
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Repeat 

For each particle calculate the distance to the optimal solution called fitness. 

If f (χ)<f (Pbest);    χ= Pbest 

Select globalbest among the Pbest. 

If f (globalbest) reaches to the optimal solution; terminate the algorithm. 

Otherwise;  update the velocity νi   and particles χi  according to given formula: 

νi = ω+ νi +random[0- c1]*( Pbest- χi)+random[0- c2]*( globalbest- χi) 

χi= χi+ νi 

Until termination criteria is met. 

HARMONY SEARCH ALGORITHM 

Harmony Search (HS) algorithm is a metaheuristic algorithm and it is inspired by the Jazz musicians 

and developed by Geem  et.al., (2001).  There is a parallel idea between HS and how Jazz musicians 

create harmony when they play the music.  In other words, the process of Jazz improvisation and the 

process of reaching the optimal solution is the inspiration of the HS algorithm. Each candidate variable 

corresponds to a musician and generates a note or value in order to find the best harmony or the 

optimum solution.  

Musicians play the notes randomly or use their previous experiences in order to find the best harmony. 

The same idea is used in HS algorithm. Each candidate variable is generated in random manner or 

previously generated good values assigned to candidates in order to find the optimal value.  

HS algorithm is based on few parameters;  hmcr, par and fw.  The parameter hmcr is called harmony 

memory considering rate and it denotes the rate of choosing candidates from the Harmony Memory 

(HM) and generally changes from 0.7 to 0.99.  The parameter par is called pitch adjusting rate and 

indicates the rate of choosing a neighbouring value and can be selected from 0 to 1.  The parameter fw 

is called  fret width in a musical instrument, but in HS algorithm it denotes the amount of maximum 

rate of change in the pitch adjustment (Lee & Geem, 2005). 

HS algorithm has the following steps: 

a. Define harmony memory size (hms). The size of candidates depends on hms. 

b. Initialize the candidates χi randomly and store them in Harmony Memory (HM). 

c. Define the objective function  f which is needed to be optimized. 

d. Define the hmcr, par and fw. 

Repeat 

With a given probability of hmcr, select the value from HM. 

With a given probability of 1-hmcr, generate a random value in the given range. 

With a given probability of par, update the candidates χi by applying the following  formula: 

χi_new= χi_old +u(0-1)*fw   

or 

χi_new= χi_old -u(0-1)*fw 

With a given probability of 1-par, do not update the candidates χi. 

If f(χi)<f(χworst);  replace χworst with χi. 

Until termination criteria is met. 
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EXPERIMENTAL RESULTS 

In this paper, the performances of the DE algorithm, PSO algorithm and HS algorithm are compared 

on some well known benchmark functions. Twenty-two bechmark functions are selected as unimodal 
or multimodal, separable or non-separable. The selected bechmark functions are given in the Table 1.  

Table 1. Benchmark functions used in experiments 

No Range  D Function Formulation fmin C 
 

1 

 

[-100, 100] 

 

30 

 

Step f�x� =���x� + 
0.5�
���
���  

 

0 

 

US 

 

2 

 

[-100, 100] 

 

30 

 

Sphere f�x� = �x���
���  

 

0 

 

US 

 

3 

 

[-10, 10] 

 

30 

 

SumSquares f�x� = �ix���
���  

 

0 

 

US 

 

4 

 

[-1.28, 

1.28] 

 

30 

 

Quartic f�x� = �ix�� + random�0,1�
�
���  

 

 

0 

 

US 

 

5 

 

[-D
2
, D

2
] 

 

6 

 

Trid6 f�x� = ��x� −1�� −�x�x����
���

�
���  

 

 

-50 

 

UN 

 

6 

 

[-D
2
, D

2
] 

 

10 

 

Trid10 f�x� = ��x� −1�� −�x�x����
���

�
���  

 

-210 

 

UN 

 

7 

 

[-5, 10] 

 

10 

 

Zakharov f�x� =�x�� + �0.5ix��
��� !��

��� +  �0.5ix��
��� !� 

 

0 

 

UN 

 

8 

 

[-4, 5] 

 

24 

 

Powell f�x� = ��x���" + 10x�������/$
��� + 5�x���� − x����+ �x���� − x������+ 10�x���" − x���� 

 k=4 

 

0 

 

UN 

 

9 

 

[-10, 10] 

 

30 

 

Schwefel 2.22        f�x� = |x�| + 	'|x�|�
���  

 

0 

 

UN 

 
10 

 
[-100, 100] 

 
30 

 
Schwefel 1.2        f�x� = �(�x)�

)�� *��
���  

 
0 

 
UN 

 

11 

 

[-30, 30] 

 

30 

 

Rosenbrock f�x� =��100�x�+� − x�������
��� + �x� −1��, 

 

0 

 

UN 

 

12 

 

[-10, 10] 

 

30 

 

Dixon-Price f�x� = �x� − 1�� +�i-2x�� − x���/��
���  

 

0 

 

UN 

13 [-10, 10] 2 Booth f�x� = �x� +2x� − 7��+ �2x� + x� −5��	 
 

0 MS 

 

14 

 

[-5.12, 

5.12] 

 

30 

 

Rastrigin f�x� =��x�� − 10 cos�2πx�� + 10,�
���  

 

0 

 

MS 
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15 

 

[-500, 500] 

 

30 

 

Schwefel f�x� = �−x�sin	�4|x�|��
���  

 

 

-418.9829*D 

 

MS 

 

16 

 

[0, π] 

 

10 

 

Michalewicz1

0    

f�x� = −�sin	��
��� x���sin5ix��π 6��7 

m=10 

 

-9.6602 

 

MS 

 

17 

 

[-100, 100] 

 

2 

 

Schaffer    f�x� = 0.5 +	 sin��4x�� + x���	− 0.5�1 + 0.001�x�� + x����� 

 

 

0 

 

MN 

 

18 

 

[-5, 5] 

 

2 

 

Six Hump 

Camel Back      

f�x� = 4x�� − 2.1x�� +13x�: + x�x�− 4x�� + 4x�� 

 

-1.03163 

 

MN 

 

19 

 

[-10, 10] 

 

2 

 

Shubert   f�x� =  �icos��i + 1�;
��� x� 	

+ i! �icos��i;
���+ 1� x� + i! 

 

-186.73 

 

MN 

 

20 

 

[-600, 600] 

 

30 

 

Griewank f�x� = 14000�x�� −'cos <x�√i> + 1	�
���

�
���  

 

0 

 

MN 

 

21 

 

[-32, 32] 

 

30 

 

Ackley    
f�x�
= −20expA−0.2B1n�x���

��� C
− exp	�1n�cos	�2πx��� + 20 + e�

���  

 

 

0 

 

 

MN 

 

22 

 

[-50, 50] 

 

30 

 

Penalized f�x� = πn D10sin��πy��
+��y� −1���1���

���+ 10sin��πy�+��,+ �y� − 1��F
+�u�x�, 10,100,4��

�  

y� = 1 + 14 �x� + 1� 
 	u�x�, a, k, m�
= I k�x� − a�7,																												x� > K0,																																			 − a ≤ x� ≤ ak�−x� − a�7,																						x� < −K 
 

 

0 

 

MN 

D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable 

For all of the three algorithms used in this study, the number of population is fixed to 100. All results 

are averaged over 20 runs. The performance of the meta-heuristic algorithms mainly depends on the 

selection of control parameters correctly.  For the DE algorithm, the two control parameters which are 

F and CR are selected from the sets {0.3, 0.5, 0.7, 0.8, 0.9, 1.2, 1.4}, {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}  
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respectively.  For the PSO algorithm, the number of control parameters are more than the DE 

algorithm and are selected from the sets as given below; 

c1 Є {0.3, 0.6, 0.9, 1.2, 1.5, 1.8} 

c2 Є{0.3, 0.6, 0.9, 1.2, 1.5, 1.8} 

w Є{0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

ν min and νmax  are fixed to the upper and lower bound of each function in PSO.  Lastly, for the HS 
algorithm, the control parameter hmcr is selected from the set {0.7, 0.8, 0.9, 0.93, 0.96, 0.98} and the 

control parameter par is selected from the set {0.01, 0.02, 0.05, 0.1, 0.2} . The parameter fw is 

adjusted as 0.01, 0.05, 0.1, and 0.2 of upper bound of each function in HS. 

In Table 2 through 5, the performance of these three algorithms over 100000 evaluations is shown. For 

each algorithm, the best and the average of 20 runs are tabulated for the best combination of control 

parameters for that function. 

Table 2. Performance of the Algorithms on US functions 

 
No 

 
Function 

 
DE 

 
PSO 

 
HSA 

 US 
Reached 
optimal 

Average 
Reached 
optimal 

Average 
Reached 
optimal 

Average 

1 Step 0 0 0 0 0 0 

2 Sphere 4.13886e-025 1.1e-24 4.20318e-033 2.68281e-030 0.000172047 0.000306177 

3 SumSquares 6.56945e-027 2.43e-26 2.29419e-035 1.33534e-033 0.000785468 3.60788e-005 

4 Quartic 0.000834919 0.001184 0.00073759 0.00426387 3.42479e-005 6.30626e-005 

Table 3. Performance of the Algorithms on UN functions 

 
No 

 
Function 

UN 

 
DE 

 
PSO 

 
HSA 

Reached 
optimal 

Average 
Reached 
optimal 

Average 
Reached 
optimal 

Average 

1 Trid6 -50 -50 -50 -50 -50 -50 

2 Trid10 -210 -210 -210 -210 -209.737 -209.678 

3 Zakharov 1.79694e-66 3.74e-65 1.05622e-128 2.13049e-123 7.71711e-009 1.87231e-005 

4 Powell 3.22879e-06 7.8e-06 1.84456e-005 8.84646e-005 0.0287128 0.0152576 

5 Schwefel 2.22 1.80172e-14 2.68e-14 3.02974e-013 1.03357e-011 0.0028714 0.00442567 

6 Schwefel 1.2 2.54742 19.6012 0.000657878 0.00870464 182.804 365.869 

7 Rosenbrock 20.7731 22.3484 1.95745 18.0948 1.6957 53.3728 

8 Dixon-Price 3.85044e-08 3.34E-07 2.3402e-021 1.55883e-015 0.926283 1.09333 

Table 4. Performance of the Algorithms on MS functions 

 
No 

 
Function 

MS 

 
DE 

 
PSO 

 
HSA 

Reached 
optimal 

Average 
Reached 
optimal 

Average 
Reached 
optimal 

Average 

1 Booth 0 0 0 0 9.49694e-010 2.21531e-009 

2 Rastrigin 0.00589048 2.84916 15.9194 22.6993 4.02884e-005 0.000101882 

3 Schwefel -12569.5 -12569.5 -11740.4 -11740.4 -12569.5 -12569.5 

4 Michalewicz10 -9.66015 -9.66015 -9.65277 -9.48277 -9.66015 -9.66015 
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Table 5. Performance of the algorithms on MN functions 

 
No 

 
Function 

MN 

DE PSO HSA 

Reached 
optimal 

Average 
Reached 
optimal 

Average 
Reached 
optimal 

Average 

1 Schaffer 0 0 0 0 1.77453e-008 1.21851e-007 

2 

Six Hump 

Camel 

Back 

-1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

3 Shubert -186.731 -186.731 -186.731 -186.731 -186.731 -186.731 

4 Griewank 0 1.08e-20 5.48962e-011 0.00910358 0.000306415 0.00159353 

5 Ackley 4.48102e-008 7.5e-08 2.79584e-008 5.59113e-007 0.00361203 0.00486016 

6 Penalized 8.16099e-027 1.34e-25 5.42457e-015 0.0103669 6.55047e-007 1.38665e-006 

The experimental results have shown that for US functions the PSO algorithm converges faster than 

the other two algorithms. For the UN functions, the performance of DE and PSO is comparable in the 

first five functions. However, the convergence speed of PSO algorithm for the last three functions is 

much more faster than both DE and HS algorithm. 

Unlike the unimodal functions, the convergence speed and performance of DE and HS algorithm is 

better than the PSO for MS functions.  In Table 4, we can easily observe that for MS functions, the 

convergence speed of DE and HS algorithms are comparable and better than PSO algorithm. 

Lastly for the MN functions, the convergence speed of the algorithms are similar for the first three 

functions. For function 4 and 6 the convergence speed of DE is better than the other two algorithms. 

CONCLUSION 

From the experimental results, we can summarize our findings as follows; 

1 For Unimodal functions, the convergence speed of PSO algorithm is better than the other 

two algorithms. 

2 For Multimodal Separable functions, the DE algorithm is a very efficient method for finding 

the optimal solution and its convergence speed is much more faster than the PSO algorithm 

and slightly faster than HS algorithm. 

3 For the Multimodal Non-separable functions, when we take into account all 6 functions 

used, the convergence speed of DE is better than the other two algorithms. 
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