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ABSTRACT 

This paper proposes two new iterative methods for solving nonlinear equations. In comparison to 

the classical Newton’s method, the new proposed methods do not use derivatives; furthermore 

only two evaluations of the function are needed per iteration. Using the methods proposed, when 

the starting value is selected close to the root, the order of convergence is 2. The development of 

the method allows you to achieve classical methods such as secant and Steffensen’s as an 

alternative to the usual process. The numerical examples show that the proposed methods have the 

same performance as Newton’s method with the advantage of being derivative free. In comparison 

to other methods which are derivative free, these methods are more efficient. 

Keywords: Iterative method, nonlinear equations, derivative free method, Newton´s method. 

INTRODUCTION 

Solving equations is one of the most important problems in numerical analysis. The importance of this 
kind of problem solving has contributed to the development of several iterative methods for solving 
nonlinear equations. Newton’s famous method for finding the root of a nonlinear equation uses the 
iterative method 

( )
( )1 '

n

n n

n

f x
x x

f x
+ = − , 

starting from an initial value 0x . Newton’s method is an important basic method with order of 

convergence 2. 

Many authors have studied and proposed multiple methods for solving nonlinear equations with high 
order convergence (Chun and Ham, 2007), (Kou, 2007) and (Heydari et al., 2011). However, they 
have to use high order derivatives which is a serious disadvantage. Sometimes the applications of the 
iterative methods which depend on derivatives are restricted in engineering and sciences.  

There are numerous papers about iterative methods without the use of derivatives at the expense of 
additional evaluation of the function (Weerakoon and Fernando, 2000), (Jain, 2007), (Cordero et al., 
2010) and (Nusrat and Moin, 2012). To overcome this we present and analyze two methods for 
solving nonlinear equations that do not require the derivative of the function and use only two 
evaluations of the function per iteration. 

Our motivation to pursue this new technique is Muller´s method, which uses 3 values to obtain a 
parabola that approximates the original function. In this paper, we will use a particular quadratic 
polynomial. Using Newton’s method we can obtain an approximation of the root of a polynomial. This 
root will be the new approximation to the original root.  
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As a result we obtain an iterative formula that for each different case provides a different iterative 
method, in particular, both iterative methods such as the Secant’s and Steffensen´s. 

DEVELOP OF THE METHODS 

Consider the nonlinear function ( )f x , let r  be a zero of ( )f x  and 0x  a starting value close to the root

r . Let 1 , 1α β− < <  be sufficiently small and define 

0 0 0( ), ( ), ( ).K f x L f x M f xα β= + = = +   

Take the particular two interpolating polynomials 

( ) ( )0q x A x x B= − + , 

( ) ( )( ) ( )0 0 0p x a x x x x b x x cβ= − − − + − + , 

and consider the following system of two equations: 

( ) ( )0 0, ,K q x A B L q x Bα α= + = + = =  

( ) ( ) ( ) ( )0 0 0, ,K p x a b c L p x c M p x b cα α α β α β β= + = − + + = = = + = + . 

Solving both systems by simple substitutions we have 

,
K L

B L A
α

−
= = , 

( ) ( )
( )

, ,
K L M LM L

c L b a
β α

β αβ α β

− − −−
= = =

−
. 

Solving (2) for ( ) 0q x = , substituting (6) and using Newton’s method for ( )p x  in (3) with 0x  as an 

approximation and substituting (7) we have 

0 0 ,
B L

r x x
A K L

α
≈ − = −

−
 

( )
( )

( )
( ) ( )

0
0 0 0 2 2

0'

p x LL
r x x x

p x b a M L K L

αβ α β

β α β

−
≈ − = − = −

− − − −
. 

Substituting (1) in the above results we get the following methods
 

( )
( ) ( )1 ,n

n n

n n

f x
x x

f x f x

α

α
+ = −

+ −
 

( ) ( )
( ) ( )( ) ( )( )1 2 2 ( )

n

n n

n n n n

f x
x x

f x f x f x f x

αβ α β

α β β α
+

−
= −

+ − − + −
, 

for suitable choices for ,α β . 

The choice of ,α β  is the key to the methods. In this way various methods for each choice of ,α β  

can be obtained. The development of the method shows an easy way to obtain different known 
methods and also a simple way to gather results about the order of convergence. 
For (10) 

i) If 1n nx xα −= − , then 
( )

( ) ( )
1

1
1

( )
n n n

n n

n n

x x f x
x x

f x f x

−
+

−

−
= −

−
, we get secant method which 

has an order of convergence 1.628. 

ii) If ( )nf xα = , then 
( )

( )( ) ( )

2

1
n

n n

n n n

f x
x x

f x f x f x
+ = −

+ −
, we get the Steffensen’s 

method which has an order of convergence 2. 
For (11) 

iii) If ( )nf xβ α= − = , then 
( )

( )( ) ( )( )

2

1

2 n

n n

n n n n

f x
x x

f x f x f x f x
+ = −

+ − −
, we get the 

(7) 

(1) 

(9) 

(2) 

(4) 

(5) 

(6) 

(8) 

(10) 

(11) 

(12) 

(13) 

(14) 

(3) 
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method that uses the central difference approximation for ( )' nf x  and which has an order 

of convergence 2. 
We propose the following derivative free method (N1) which has an order of convergence 2 for 

1n nx xα β −= − = − : 

( ) ( )
( ) ( )

1
1

1 1

2

2
n n n

n n

n n n

x x f x
x x

f x x f x

−

+

− −

−
= −

− −
. 

The derivative free method (N2) has an order of convergence 2 by substituting 

1 , ( )n n nx x f xα β−= − = : 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

2
1 1

1 2 2
1 1 1

n n n n n n

n n

n n n n n n n

x x f x x x f x
x x

x x f x f x f x f x f x

− −

+

− − −

− − +
= −

− + + −
. 

 

We consider the definition of the efficiency index (Traub, 1977) as
1

wI p= , where p  is the order of 

the method and w  is the number of function evaluations per iteration required by the method.  It can 
been seen that methods (15) and (16) requires two function evaluations per iteration with an efficiency 

index 2 1.414≈ . The next section describes in detail the convergence analysis of the proposed 
methods. 

CONVERGENCE ANALYSIS 

In this section we will present the convergence analysis by giving mathematical proof for the order of 
convergence of the methods defined by (15) and (16). 

Consider the nonlinear function ( )f x and let r  be a zero of ( )f x . Given 
nx in the methods, consider 

the polynomial  

( ) ( )( ) ( ) ( ) ( )( )
2

.
n n n n n

p x a x x x x b x x c a x x b a x x cβ β= − − − + − + = − + − − +  

By using generalized Rolle’s Theorem and (7), we know that 

( ) ( )
( )

( )3''

2

K L M L f
a

β α ξ

αβ α β

− − −
= =

−
, 

with 3ξ  between , ,n n nx x xα β+ + . 

Also, using the error for an interpolating polynomial ( )p x  we have 

( )
( )

( ) ( )( )
( )

( )( )( )
23 2'' '''

2 6n n n n n

f f
f x x x b a x x c x x x x x x

ξ ξ
β α β= − + − − + + − − − − − , 

with 2ξ  between , ,n n nx x xα β+ + . 

 

Theorem 1  

Let α  be a single root of a sufficiently differentiable function :f I → �  for an open interval I. If 0x   

is sufficiently close toα , then the iterative method (15) converge on the root α , the order of 

convergence is 2 and the asymptotic constant satisfy  ( ) ( ) ( )22 ' '' ''' 0f r k kf r f r− − = . 

 

Proof The assumption is that we have chosen 1,n nx x−  in the method. We assume that the points

1 ,n nx x −  lie in a neighborhood of a root  r . Using (17) and 1n nx xα β −= − = −  we obtain 

( )
( )

( ) ( )( )
( )

( )( )( )
23 2

1 1

'' '''
2

2 2n n n n n n

f f
f x x x b a x x c x x x x x x x

ξ ξ
β − −= − + − − + + − − + − . 

Therefore, for 1nx x +=  and with the Taylor’s expansion of ( )1nf x +  about r  we have 

(15) 

(16) 

(17) 
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( )
( )

( )
( )

( )( )( )
23 2

1 1 1 1 1 1 1 1

'' '''
' 2

2 2n n n n n n n n n n

f f
f

ξ ξ
ξ ε ε ε ε ε ε ε ε ε ε+ + + + − + −= − + − − + − , 

where 1 1 ,n n n nx r x rε ε+ += − = − . 

Suppose that 1nε +  is asymptotic to , 1nk pε > . Consequently, by expressing the above equation in 

terms of 1nε − , we determine that  

( )
21
1 1'p p

nk fε ξ+
−  

is asymptotic to 

( ) ( ) ( ) ( )( )( )2 2 2 22
3 22 2 2 1 1 1 1 1

1 1 1 1 1 1 1

'' '''
1 1 2 1 1

2 2
p p p p p p p p p p p p p

n n n n n n n

f f
k k k k k k k

ξ ξ
ε ε ε ε ε ε ε− + − + − − + −

− − − − − − −− + − − + − . 

In order to satisfy the previous asymptotic equation there are two possibilities. As the equations below 
show, in both cases, it is evident that p  must be a positive root of  

2 2 0p p− − = , or 
2 2 0p p− = . 

In both cases, the positive root is 2p = . And finally, in the limit when n → ∞ , k  must satisfy 

( ) ( ) ( )22 ' '' ''' 0f r k kf r f r− − = . 

Therefore, 

1
2

lim n

n
n

k
ε

ε
+

→∞
= , 

which shows that the new method (15) has a quadratic convergence. 
 
Theorem 2  

Let α  be a single root of a sufficiently differentiable function :f I → �  for an open interval I. If 0x   

is sufficiently close toα , then the iterative method (16) converge on the root α , the order of 

convergence is 2 and the asymptotic constant is 
2

f ''( r )

f '( r )
. 

 

Proof: Similar to the above theorem, we assume that we have chosen 1,n nx x−  in the method. We 

surmise that the points 1 ,n nx x −  lie in a neighborhood of a root  r . Using (17) and 

( )1 ,n n nx x f xα β−= − =  we obtain 

( )
( )

( ) ( )( )
( )

( )( )( )
23 2

1

'' '''
( )

2 2n n n n n n

f f
f x x x b a x x c x x x x x x f x

ξ ξ
β −= − + − − + + − − − − . 

Therefore, for 1nx x +=  and with the Taylor’s expansion of ( )1nf x +  and ( )nf x  about r  we have 

( )
( )

( )
( )

( )( ) ( )( )23 2
1 1 1 1 1 1 1 3

'' '''
' '

2 2n n n n n n n n n n

f f
f f

ξ ξ
ξ ε ε ε ε ε ε ε ε ε ε ξ+ + + + − += − + − − − + , 

where 1 1 ,n n n nx r x rε ε+ += − = − . 

Suppose that 1nε +  is asymptotic to , 1nk pε > . Consequently, by expressing the above equation in 

terms of 1nε − , we obtain that  

( )
21
1 1'p p

nk fε ξ+
−  

is asymptotic to 

( ) ( ) ( ) ( )( ) ( )( )2 2 2 22
3 22 2 1 1

1 1 1 1 1 1 3

'' '''
1 1 1 1 '

2 2
p p p p p p p p p p p p

n n n n n n

f f
k k k k k f

ξ ξ
ε ε ε ε ε ε ξ− − + − −

− − − − − −

 
− + − − − + 

 
. 

In order to satisfy the previous asymptotic equation, it is evident that p  has to be a positive root of  
2 2 0p p− = , 
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that is,  2p =  and finally in the limit when n → ∞ , 
''( )

2 '( )

f r
k

f r
= . 

Therefore, 

1
2

''( )
lim

2 '( )
n

n
n

f r

f r

ε

ε
+

→∞
= . 

Which shows that the new method (16) has an order of convergence 2 . 

NUMERICAL EXAMPLES 

In this section we present some numerical examples by employing (N1) and (N2) methods and 
compare them with Newton’s method (NM), Steffensen’s method (SM), Nusrat Moin methods (NM1), 
(NM2) and Cordero’s method (CM). All tests are performed using double arithmetic precision on 
MathLab. Table 1 shows the number of iterations and the number of functional evaluations. The stop 
criterion is 16

1 10 .n nx x −
−− <  In (N1) and (N2) we consider the initial approximation as 1x  and take 

5
0 1 10x x −= +  to obtain 2x . The choice of 510−  only depends on the order of convergence. 

The functions used in Table 1 are common and appear in (Weerakoon and Fernando, 2000), (Cordero 
et al., 2010) and (Nusrat and Moin, 2012). 

( ) ( )
3

1 1 2,f x x= − −   2.2599210498948734r =  

( ) 3 2
2 4 10,f x x x= + −   1.3652300134140969r =  

( ) ( )2 2
3 sin 1,f x x x= − +  1.4044916482153411r =  

( )4 sin( ) ,
2

x
f x x= −   1.8954942670339809r =  

( ) 2
5 3 ,x

f x e x= −   0.9100075724887091r =  

Table 1. Comparison of the methods. 

( )f x  0x  Iterations  NOFE 

  NM SM NM1 NM2 CM N1 N2  NM SM NM1 NM2 CM N1 N2 
 1f  1.85 6 6 4 6 4 6 5  12 12 16 12 16 18 10 

2f  2 5 5 3 4 3 5 4  10 10 12 12 12 10 8 

3f  1.5 4 4 2 3 2 4 4  8 8 8 9 8 8 8 

4f   2 4 4 2 3 2 4 4  8 8 8 9 8 8 8 

5f  0.5 6 6 3 4 3 5 5  12 12 12 12 12 10 10 

 

REMARKS 

The methods obtained in (Jain, 2007), (Weerakoon and Fernando, 2000), (Cordero et al., 2010) and 
(Nusrat and Moin, 2012) are combinations of results from methods (12), (13) and (14). The order of 
convergence increases at the same rate as the number of functional evaluations. In this way, the 
efficiency index does not change. Looking at methods that use derivatives of the function, (Chun and 
Ham, 2007), (Kou, 2007) , (Heydari et al., 2011), the main supposition is that all evaluations of the 
function, including the derivatives, have the same computational cost. In this case, a greater efficiency 
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index is obtained. In general, we know that the derivative has a higher computational cost. In this 
sense, Newton’s method is the main reference for all types of methods that can be described. For this 
reason, the fact that the new methods obtain the same efficiency index as Newton’s without the use of 
derivatives is an important advantage. 
 
CONCLUSIONS 

In this paper, we have proposed two iterative methods with an order of convergence 2. The methods 
use only two evaluations of the function and avoid the use of derivatives of the function. The 
efficiency index is 1.414 for both methods, which is equal to the Newton’s and Steffensen’s efficiency 
index. The numerical examples show that these methods have equal or better performance than the 
classical methods mentioned above and even some new methods of high order of convergence. The 
process provides a means to create alternative derivative free methods which have a different order of 
convergence. 
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