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ABSTRACT 

In this paper, we consider two dimensional autonomous system of the form: 

( )

( )

,

,

x P x y

y Q x y

= 


= 

&

&

                     (A) 

in which P and Q are polynomials in x and y. We write the system A in the form of 

( ) ( )

( ) ( )
2 3

2 3

, ,

, ,

x x y p x y p x y

y x y q x y q x y

λ

λ

= + + +

= − + + +

&

&

    (B) 

Where
2

p ,
2

q  and
3

p ,
3

q  are homogeneous quadratic and cubic polynomials in x and y. The 

question of interest is the maximum possible number of limit cycles (a limit cycle is an isolated 

closed orbit) of such systems which can bifurcate out of the origin in terms of the degree of P and 

Q. It is second part of known Hilbert’s sixteenth problem. Research on Hilbert’s sixteenth 

problem in general usually proceeds but the investigation of particular classes of polynomial 

system. In this paper, in particular it is given that up to six limit cycles can bifurcate from fine 

focus of some examples of cubic system (B). Also we have given one example of quadratic system 

with at most one limit cycle. 

 

Keywords:Limit cycles, perturbation, bifurcation, autonomous system, fine focus. 

 

INTRODUCTION 

In this work we are concerned with the number of limit cycles of two dimensional autonomous 

systems of the form  

( )

( )

,

,

x P x y

y Q x y


= 


= 

&

&

 (1.1) 

where P and Q are polynomials in x and y. This problem remains one of the outstanding unsolved 

problems in the theory of non-linear deferential equations. The maximum possible number of limit 

cycles (isolated closed orbits) such system have, is the  part of sixteenth problem asked by Hilbert in 

1900 in International Congress of Mathematicians in Paris [2]. In this work we are mainly concerned 

with this problem in particular cases. 

Limit cycles of plane autonomous differential system appear in the very famous classical paper of H. 

Poincare [5] and he pioneered the study of the disposition of trajectories of systems of the form (1.1) 

in their entire domain of existence without integrating the equation. Existence, non-existence and 

uniqueness of limit cycles have been studied extensively but little has been done on the number of 

limit cycles of polynomials systems. In 1950, many mathematical models from Physics, Engineering, 
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Chemistry, Biology and Economics etc., were displayed as plane autonomous systems with limit 

cycles. Also due to the well-known paper of I. G. Petrovski [3] and E. M. Landis [3and 4] concerning 

the maximum number of limit cycles of all quadratic polynomial systems. This problem has become 

more important and attracted the attention of many Pure and Applied Mathematicians [3, 6 and 7]. 

Suppose that the origin is a critical point of the system (1.1) then we can write the system (1.1) as; 

( )

( )

,

,

x ax by p x y

y cx dy q x y


= + + 


= + + 

&

&

 (1.2) 

where p and q contains no linear terms. It is well known that the orbits of the system (1.2) in 

neighborhood of the origin behave in a similar way to the orbits corresponding to the linear system; 

x ax by

y cx dy


= + 


= + 

&

&

 (1.3) 

except when  

i. 0ad bc− =  
ii. Origin is a centre or singular node for the system (1.3). 

Definition 1.The origin of the system (1.3) is a centre iff 

0 0ad bc and a d− ≠ + =  

Remark 1.If the origin is a centre for (1.3), the origin of the non-linear system (1.2) could be centre 

or focus. If it is focus, it is possible to bifurcate limit cycles out of it. Often these bifurcating limit 

cycles are called local or small amplitude limit cycles. 

Definition 2. The origin of the system (1.2) is called a fine-focus if it is a centre of linear system (1.3) 

but non-linear system (1.2). 

When the origin of the system (1.2) is focus or fine focus, we can take canonical coordinates 

to transform (1.2) to the form: 

( )

( )

,

,

x x y p x y

y x y q x y

λ

λ


= + + 


= − + + 

&

&

 (1.4) 

Then origin is a fine focus iff 0λ =  

We are mainly concerned with cubic systems that is, system of the form 

( ) ( )

( ) ( )

2 3

2 3

, ,

, ,

x x y p x y p x y

y x y q x y q x y

λ

λ


= + + + 


= − + + + 

&

&

 (1.5) 

 

where ; 2,3
k k

p and q k =  are homogeneous polynomial of degree k. The linear part of (1.5) is in 

canonical form and the stability of the origin is determined by the sign of ,λ  origin is stable or 

unstable either 0 0. 0,or Ifλ λ λ< > =  the origin is a centre for the linearized system and is said to 

be a fine focus (or a weak focus) of the non-linear system. Systems of the form (1.5) were considered 

in [1, 25 and 36], where they have given certain classes of (1.5) with several small amplitude limit 

cycles.  

When 3 3 0p q= = then (1.5) becomes quadratic system have been widely studied; it is known that

2 4H ≥ , but no more precise estimate has yet been established and it is still unsolved even whether 

2H is finite. When 2 2 0p q= =  in equation (1.5) becomes cubic system were investigated in [1 and 
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41], where it was proved 
that at most five limit cycles can bifurcate out of the origin. Cubic systems in 

general (1.1) are less well understood; we referred to [1, 25, 35, 36 and 37]. 

Our study of cubic system (1.5) is entirely local. We write the equation (1.5) in the form; 

( ) ( )

( ) ( ) ( )

2 2 3 2 2 3

2 2 3 2 2 3

2 3

2 3

x x y Ax B D xy Cy Fx Gx y H P xy Ky

y x y Dx E A xy Dy Lx M H F x y N G xy Py

λ

λ


= + + + + + + + + − + 


= − + + + − − + + − − + − + 

&

&

 (1.6) 

It is the form used in [36]. In [36] they found an example of system of the following form 

with six small-amplitude limit cycles. 

( )

2 2 3

2 2 3 2 2

x x y Cy Hxy Ky

y x y D x y Lx Hx y Nxy

λ

λ


= + + + + 


= − + + − + − + 

&

&

 (1.7) 

Other examples of cubic systems with several limit cycles are given by Wang & Luo [38]. Especially 

the work of Li and co-authors is interesting [26, 27, 28 and 33] and is reported by Tian in [42]. 

It was proved in [1 and 11] that quadratic system can have at most three small amplitude limit cycles 

that is in (1.6) and at most five small amplitude limit cycles if the quadratic terms are absent in (1.6). 

We found one example of quadratic system and prove that this system has at most one limit cycles 

(given in section 5). 

There are many methods to bifurcate limit cycles out of the origin. The one we follow is classical 

method [1] of seeking Liapunov function V in the neighborhood of the origin for which V, the rate of 

change of trajectories is of the form; 
2 4

2 4
...,r rη η+ +   

where 2 4, ,...η η are constants to be found, known as focal values. We describe a procedure for 

determining such a function in section 3. This involves some extremely complicated calculation with 

polynomials in the coefficients of 2 2 3 3
, , .p q and p q We therefore present an algorithm which enables 

the calculations to be implemented on a computer, exploiting existing techniques for the formal 

manipulation of polynomials in many variables with integer coefficients. We used a computer algebra 

package MAPLE for this purpose. The main results are given in section 4. 

CENTRE CRITERIA 

In the local study of the system (1.1), we find that the problem of a centre is closely related to the 

problem of number of limit cycles. This problem of centre consists of all obtaining necessary and 

sufficient conditions that bear on the coefficients of P and Q, in order that all orbits in a neighborhood 

of the origin is periodic. To calculate number of limit cycles ' ,k sη we find some value maxk by 

proving that origin is a centre if 2
0

k
η = for max

1.k k≤ +  Therefore we need conditions which are 

sufficient for the origin to be a centre [1 and 8]  

Theorem 1. If the origin is a critical point of focus type and 

 

0
P Q

x y

∂ ∂
+ =

∂ ∂  
 

then the origin is a centre for the system (1.1). 

Theorem 2. Symmetry Principle 

Suppose in equation (1.1) 

( ) ( )

( ) ( )

, ,

, ,

P x y P x y

Q x y Q x y

= −

− = −
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and the origin is the only singular point on the y-axis. If a trajectory Γ  starts from the positive y-axis 

and returns to the negative y-axis, then Γ  is a closed trajectory. If all the trajectories near the origin 

posses this property, then origin is a centre. 

 

 

Theorem 3. Symmetry Principle 

Suppose in equation (1.1) 

( ) ( )

( ) ( )

, ,

, ,

P x y P x y

Q x y Q x y

− = −

− =
 

and the origin is the only singular point on the x-axis. If the trajectory Γ  starts from the positive x-

axis and return to the negative x-axis, then Γ  is a closed trajectory. If all the trajectories near the 

origin posses this property, then origin is a centre. 

METHOD FOR CALCULATION OF FOCAL VALUES 
For completeness we are describing the method here which is given in [1], the procedure for 

calculation of focal values 2kη for the system (1.1) and to determine the Liapunov function V. It is 

convenient to write the system (1.4) in the form; 

( ) ( ) ( )

( ) ( ) ( )

2 3

2 3

, , ... ,

, , ... ,

n

n

x x y p x y p x y p x y

y x y q x y q x y q x y

λ

λ


= + + + + + 


= − + + + + + 

&

&

 (3.1) 

where, for k=2,3,…,n, k kp and q  are homogeneous polynomials of degree k. We take a function V 

( ) ( ) ( ) ( )2 2

3

1
, , ... , ...

2
k

V x y x y V x y V x y= + + + +  
 

for 3k ≥  are homogeneous polynomial of degree k. Further we can write 

,

0

k
k i i

k k i i

i

V V x y−

−
=

=∑  
 

and kV  for the column vector ( ),0 1,1 0,
, ,..., .

T

k k k
V V V−  

The rate of change of V along a trajectory is 
.

V such that: 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

3 4 2

3 4 2

... , ... ,

... , ... ,

nx x

ny y

V x V V x y p x y p x y

y V V x y q x y q x y

λ

λ


= + + + + + + + 


+ + + + − + + + + 

&

 (3.2) 

Where suffices x and y denote partial differentiation with respect to x and y respectively. 

We write kD  for the collection of terms of degree k on right hand side of (3.2). Clearly for

3k ≥ , 

( ) ( ) ( ) ( )1 2 1 2 1 1...
k k k k k k kx y x y

D y V x V V p V q xp yq− − − −
   = − + + + + +     (3.3) 

The polynomial in the second parenthesis has coefficients which can be expressed linearly in terms of 

the coefficients in .k kp and q  

Here we chose coefficients ,i j
V  and quantities kη  so tha 

i. 0kD = if k is odd and 

ii. ( )
1

2 2 2 k
k k

D x yη= +  if k is even. 
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For convenience, we say that , 1i k
V − is an odd or even coefficient of kV  according to whether i is odd or 

even. 

Suppose first that k is odd. The requirement 0kD =  is equivalent to a set of k+1 linear equations for 

k+1 unknowns ,0 1,1 0,, ,..., .
k k k

V V V− These uncouple into two sets of (k+ 1)/2 equations, one set 

determines the odd coefficients of kV  and the other determines the even coefficients and kV  is 

uniquely determined. 

When k is even (k= 2m, say) the condition 0kD =  is equivalent to k+1 linear equations which again 

uncouple into two sets: m+1 equations involving the m odd coefficients of kV  and m equations 

involving the m+ 1 even coefficients. Thus we can not arrange that 0
k

D = , due to which we 

introduce the new variable ,kη  and require 
k

k k
D rη= for which we have m equations. 

When k is a multiple of 4, we impose the extra condition 

, 0
m m

V =   

When k= 2(mod4) there is no “middle” term to set equal to zero, instead we split the middle equation 

namely; 

( ) ( )1, , 11 1 0m m m mm V m V+ ++ + + =  

In summarize for any class of given system, there are four steps to proceed 

i. Calculation of the focal values. 

ii. Reduction of the focal values to obtain the Liapunov quantities. 

iii. Establishing the value of maxk by proving that the origin is a centre if 

2 max0 1.k for k kη = ≤ +  

iv. Commencing with a fine focus of maximal order, finding a sequence of perturbation each of 

which reverse the stability of the origin. 

 

METHOD OF BIFURCATING LIMIT CYCLES FROM THE ORIGIN 

Much of the recent progress on Hilbert’s sixteenth problem has involved the construction of systems 

with small amplitude limit cycles. These are the limit cycles which bifurcate out of a critical point 

under perturbation of the equations. Now question is how these small-amplitude limit cycles can be 

generated. There are various ways of establishing the existence of limit cycles. These may fall into 

two main categories: (i) Local (ii) global. In local methods analysis is restricted to a small 

neighborhood of a critical point of an orbit. Whereas methods in which analysis require studying 

orbits in the large, are named as “global”. 

There are two main methods of proving the existence of limit cycles. The first one depends on the 

following form the Poincare Bendixson theorem: 

Theorem 4. If the system 

( )

( )

,

,

x P x y

y Q x y

=

=

&

&

 

has a solution which remains in a bounded region and does not approach an equilibrium point then 

the solution is either itself a periodic orbit or it spirals towards a solution which is periodic. 

So it is easy to prove the existence of a limit cycle by determining a bounded region in which 

trajectories remain and which does not contain a critical point. Second method is bifurcation 

techniques. The phenomenon related to the exchange of stability of solution is called bifurcation when 

parameters or coefficients are perturbed. 
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In this section we are describing how these small amplitude limit cycles can be bifurcated when we 

perturbed the coefficients of the system with origin as a fine focus. 

The idea is to start with a system (1.4) for which the origin is a critical point of focus type whose 

order is as large as possible, and to make a sequence of perturbations of the coefficients occurring in P 

and Q, each of which reserves the stability of the origin, thereby generating a small amplitude limit 

cycles. 

Let τ  be the collection of two dimensional autonomous differential systems of the form (1.1) and let 

the system S τ∈ has a fine focus of order .k Then by definition ( ) ( )0 ... 1 0,L L k= = − =  and 

( ) 0L k ≠  for S. Without loss of generality, we take ( ) 0,L k < so that origin is stable. Let Γ be a 

level curve of V which is sufficiently near the origin so the flow is inward across it. Now as we 

perturbed S, we get 1 ,S τ∈  so that 

( ) ( ) ( )0 1 ... 2 0L L L k= = = − =  

But ( )1 0,L k − > the origin for 1S is unstable. Now we take Liapunov function 1V  corresponding to 

1,S let us take level curve 1Γ of 1V inside Γ  and sufficiently near the origin so that the flow is 

outward across 1Γ By the Poincare-Bendixson theorem, there is a limit cycle between Γ  and 1Γ . 

The next step is to take a perturbation of 2S of 1
S so that 

( ) ( ) ( )0 1 ... 3 0L L L k= = = − =  

and ( )2 0;L k − < if the perturbation is sufficiently small, the flow remains inward across Γ  and 

outward 1Γ , whence 2S has a limit cycle between Γ and 1Γ  (See fig.). As the origin is stable for 2S , 

there is also a limit cycle 

 
Figure: Limit cycles 

 inside 1Γ . By continuing in this way, we can produce k number of limit cycles. The required 

conditions are: 

 

(4.1) 

This strategy may fail for one of the following two reasons. 

i. It may be that less than k Liapunov quantities are derived from 2 2 2,..., kη η + . 

ii. It may happen from that the condition (4.1) can not be satisfied by perturbations which 

remain within the class of equations under consideration. 

We have found an example which has less Liapunove quantities. 

( ) ( ) ( ) ( )

( )

1 0, 1

0,1,...,

L j L j L j L j

j k

+ < << +

=
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1. Some Examples 

We are giving here firstly the example of quadratic system with at most one limit cycle. 

Consider 

( ) ( )2 2

2 2

2

2

x x y ax b d xy c a y

y x y dx axy dy

λ

λ

= + + + + + −

= − + + + −

&

&

 (5.1) 

Using the algorith in explained in section 3, we have 2 .η λ= So ( )0L λ=  and now we 

calculate 4.η For this we substitute 0λ =  in (5.1). Here we put 2,2 0 4,V as k= =  we get 

4

1

8
bcη = −  

Here ( )1 .L bc= − For a fine focus of order greater than one we take ( )1 0,L =  that 0.bc = So either 

0 0.b or c= =  

1. If 0, 0b c= ≠ then the system becomes; 

( )2 2

2 2

2

2

x x y ax dxy c a y

y x y dx axy dy

λ

λ

= + + + + −

= − + + − −

&

&

 

and 

0
P Q

x y

∂ ∂
+ =

∂ ∂
 

Thus origin is centre by theorem 1. 

2. Now we take 0, 0b c≠ =  then the system takes the form; 

( )
.

2 2

.
2 2

2

2

x x y ax b d xy ay

y x y dx axy dy

λ

λ

= + + + + +

= − + + − −

 

We have calculated 6 8 10
, andη η η and found 6 8 10 0.η η η= = = So this is an example of one limit 

cycle. 

 

Theorem 5. For the system (5.1) 

( )

( )

0

1
1

8

L

L bc

λ=

= −
 

If we choose ( )0 0 1 0,c and b then L> > <  choosing 0λ >  we have ( ) ( )0 1 0L L < . So we 

have one limit cycle. 

 

Example 1. Now we are going to consider the simple classes of system (B); 

2 3

3 2

x x y ax cx

y x y dy exy

λ

λ

= + + +

= − + + +

&

&

 (5.2.1) 

Using the algorithm explained in section 3, we have ( ) 20L η λ= = . We set 0λ = . Then we calculate 

( )4

3

8
c dη = +  

Thus 

( ) ( )1L c d= +  
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For a fine focus of order greater than one, we take ( )1 0L = , so that ( ) 0c d+ = . By taking  

c d= −  (C) 

The system (5.2.1) becomes 

2 3

3 2

x y ax dx

y x dy exy

= + −

= − + +

&

&

 (5.2.2) 

Then we calculate 

2

6

5 1

48 16
da deη = − +  

So the Liapunov quantity can be written as 

( ) ( )2

62 5 3L d a eη= = − −  

Then for the fine focus of order greater than two, we take ( )2

6 0, 5 3 0.sothat d a eη = − = Then we 

have two cases: 

1. 0,d or=  

2. 25 3 0a e− =  
 

Case 1.  If we have d = 0, then equation (C) gives us c= 0 and hence by theorem 1, the origin is 

centre. So 0.d ≠  
 

Case 2. Then we take 
25 3 0,a e− =  so 

25

3
e a=  (D) 

Then the system (5.2.2) takes the form 

2 3

3 2 25

3

x y ax dx

y x dy a xy

= + −

= − + +

&

&

 (5.2.3) 

We then calculate 

4

8

5

96
a dη =  

so that 

( ) 4
3L a d=  

and 

( ) ( ) ( ) ( ) ( ) ( )2 40 , 1 , 2 5 3 , 3L L c d L d a e L a dλ= = + = − − =  

We therefore have the following lemma. 

 

Lemma 1. The origin of the system (5.2.1) is a fine focus of order three if 0,c dλ = = − and 

25 3 0a e− =  are satisfied and if 0.ad ≠ As if we take 0,d = then the origin is centre. So 

0, 0,d and if a≠ = then all the Liapunov quantities ( ) ( )4 , 5 ,...L L are zero. 

 

Remark 2.  If 0,a = then we conjecture that origin is a centre for 

 

3

3

x y cx

y x dy


= − 


= − + 

&

&
 

(E) 
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Theorem 6. Suppose that the origin of the system (5.2.1) is a fine focus of order three (i.e. it satisfies 

the condition of Lemma 1). Then by suitable perturbation of the coefficients three limit cycles can be 

bifurcated out of the origin. 

 

We define: 

 

2

4

5 3

c d

a e

a d

α

β

γ

= +

= −

=

 

Since origin is a fine focus of order three, therefore by Lemma 1; 

 

0 0butλ α β γ= = = ≠  
 

That is ( ) ( )0 3 3 0.L k for k but L= < ≠ For definiteness, we suppose that d > 0, then ( )3 0.L >

First we perturb e so that ( ) 0L k = , for 1k ≤ but ( ) ( )3 2 0.L L < This is achieved by decreasing e. 

At the same time we adjust the values of c, so that 0.α = Thus the order of the fine focus is reduced 

by one and the stability of the origin is reversed. Thus a limit cycle bifurcates out of the origin. 

Secondaly, we perturb c so that ( )1 0L > , which is achieved by increasing c, then ( ) ( )2 1 0L L < and 

( ) 0L k = for k < 1.There is again reversal of the stability at the origin and a limit cycle bifurcate out 

of the origin. If the perturbation is small enough, the first limit cycle persist and we have two limit 

cycles. Next take 0,λ <  so that ( ) ( )1 0 0.L L < Thus the stability of the origin is reversed and a 

limit cycle bifurcate out of the origin. So we have three limit cycles if the perturbation is small 

enough.  

Similarly if we take 
.

x without quadratic term i.e. ( )0, 5.2.1a in= then we have following theorem. 

Theorem 7. For the system (5.2.1) with 0a =  we have 

( )

( ) ( )

( )

( )

2

4

0

1

5 1
2

48 16

3

L

L c d

L db de

L b d

λ=

= +

= +

=

 

and the system (5.2.1) is fine focus of order at most three. 

2. General Cubic System 

 

In this section we consider some example of following type: 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 3 2 2 3

2 2 3 2 2 3

2 3

2 3

x x y ax b d xy c a y fx gx y l u xy sy

y x y dx e a xy dy ex p l f x y q g xy uy

λ

λ


= + + + + + − + + + − + 


= − + + + − − + + − − + − + 

&

&

 (6.1) 

This is the form used in [35], we put c a− instead of c. Using the algorithm 3 and computer program, 

we get the simplified form of Liapunov quantities 

( )

( )

0

1

L

L bc p

λ=

= −
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( ) 2 2 3 2

2 2

2 2 3

2

3 5 1 5 1 1 1 11 1 2
2

4 48 16 8 16 8 4 48 4 3

1 9 1 1 7 5 7 1

6 16 2 12 48 24 24 32

13 1 1 1 35 25 15 1 1

48 12 6 6 96 192 64 16 8

1 1

48 192

L dab de ep ef le ecb ab fb fg dfb

d cb eab fae aue ac b acp abg aep

asb ale alc a cb aecb c p c b sp uq

ue cb

= + − − − + + − − −

− + + − − − + −

+ + − − − − + − − +

+ − 3 2 2 2

2 2 2 2 2 2 2 2

2

5 5 1 11 3 1 1
deg

8 48 24 48 32 32 24

1 1 1 5 1 1 11 7 1

48 12 4 48 6 48 96 16 12

19 5 1 1 1 1 1 1

96 48 24 64 16 48 64 16

1 3 1 1 1

48 8 32 4 16

c f c l esb scb dcb dbp

deq dlb dbu cue cdq cbg cep cef cle

c eb c de be b p b u b l e p e f

e l sf qp qf l

+ + + + − − +

− + − − + + + + +

− − + − − + + −

− − − − − 2 2 21 5 1 1

4 48 192 48

1 3 1

16 32 16

s ba e baq e cb e dc

des qcb lq

− + + +

+ + −

 

 

Using p bc= , we have, 

( ) 3 2 2 2 3

2 2 2 2 2 2 2

2 2

5 1 1 11 1 5 1 1 1
2

8 16 4 48 4 48 8 48 48

5 5 1 1 1 1 1 3

8 48 24 16 48 16 48 8

1 1 5 1 1 1 1 1 1
deg

4 16 48 16 6 8 24 48 12

1 5 1 1 7

4 48 6 48 16

L ef le ab fb fg c b uq ue cb

c f c l e b b u b l e f e l sf

qf ls de lq scb dcb deq dlb

dbu cue cdq cbg

= − − + − − − + + −

+ + + − + − − −

− − + − + − + − +

− − + + + 2 2

2 3 2 2 2

2 2

2

1 1 5

12 12 48

1 5 1 1 1 1 3 1

4 48 48 48 16 16 4 16

2 1 9 1 1 17 7 13

3 6 16 2 12 48 24 48

1 1 1 1 19

12 6 6 24 48

cef cle c eb c de

ba e baq e bc e dc des qcb dab ecb

dfb d cb eab fae aue ac b abg asb

ale alc a cb esb aecb

+ − −

− − + + + + + +

− − + + − − + +

+ − − + −

 

 

 

Still it contains too many terms. To make progress, we clearly must consider particular cases of (6.1), 

i.e. we put 

0, 0, 0, 0, 0, 0, 0e b c q g f s= = = = = = =  

Then we get a following example. 

 

Example 1. 

( )2 2 2 3

2 2 2 3

2 3

2

x y ax dxy ay l u xy sy

y x dx axy dy lx y uy

= + + − + − +

= − + − − − +

&

&

 (6.2) 

 

Using algorithm defined in section 3 and computer program, we get the simplified form of Liapounov 

quantities; 
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( )

( )

( )

0

1

2

L

L bc p

L sl

λ=

= −

= −

 

So ( )2 .L sl= − For the fine focus of order greater than two, we take ( )2 0L = , so that 0sl =  it 

implies that 0 0.l or s= =  
 

Case 1: If we take 0,l =  then by theorem 1, origin is centre. So 0.l ≠  
 

Case 2: If we take 

0s =  (c) 

then the system in (6.2) takes the form where as 

( )2 2 2

2 2 2 3

2 3

2

x y ax dxy ay l u xy

y x dx axy dy lx y uy

= + + − + −

= − + − − − +

&

&

 (6.3) 

 

Using the algorithm described in section 3 and computer program, we get the 

Liapunov quantities of the form 

2 2

8

35 1 5

48 32 64
adlu l u u lη = − +  

So ( ) ( )3 140 6 15L lu ad l u= − +  

For a fine focus of order greater than three, we take ( )3 0,L so=  

( )140 6 15 0lu ad l u− + =  

Hence we have two choices: 

1. 0, 0,140 6 15 0u l ad l u= ≠ − + ≠  

2. 140 6 15 0, 0, 0ad l u u l− + = = ≠  

 

Case 1: If we take 

0, 0u l= ≠  (D) 

Then the system (6.3) takes the form;  

2 2 2

2 2 2

2

2

x y ax dxy ay lxy

y x dx axy dy lx y

= + + − +

= − + − − −

&

&

 (6.4) 

Using the algorithm described in section 3 and computer program, we get following form of Liapunov 

quantities, 

2 3 2 3

10

1 1

16 16
a l d lη = − +  

So 

( ) ( ) ( )34L l a d a d= − − +  

For a fine focus of order greater than four, we take ( ) ( )( )3
4 0 .L l a d a d= = − − +  So there we have 

two choices as 0l ≠  

1. 0, 0a d a d− = + ≠  

2. 0, 0a d a d+ = − ≠  

 

Case 1(i): if 0, 0a d as l− = ≠ that is  
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d a=  (E) 

Then the system (6.4) takes the form 

2 2 2

2 2 2

2

2

x y ax axy ay lxy

y x ax axy ay lx y

= + + − +

= − + − − −

&

&

 (6.5) 

Using the algorithm described in section 3 and computer programe, we get ( )12 0, 5so Lη = is derived 

from ( )14 6and Lη is derived from 16
η as under; 

( ) ( )
( )

2 6 4 2 8 2 3 5 2 4

2 4 3 2 4 2 5 6 2 8

4 4 10 6

5 7776160 32880 137715200 2097333 2097333 32880

6 ( 195094908 2163915 169384608 12440144640 24286787840

32222400 362333440000 2163915 )

L a l a l a l a a l l a l

L a a l a l a l a l a l

a l a l

= + + − + −

= − − − + + −

+ + +

 

 

So the system (6.2) is a fine focus of the order seven. 

 

Case 1(ii): If 0a d+ =  that is 

d a= −  (F) 

 

Then the system (6.3) takes the form 

2 2 2

2 2 2

2

2

x y ax axy ay lxy

y x ax axy ay lx y

= + − − +

= − − − + −

&

&

 (6.6) 

We get all next Liapunov quntities are zero. i.e. 12 14
0η η= =

 
 

Case2: If 140 6 15 0,ad l u then− + =  

( )
1

6 140
15

u l d= −  (G) 

And the system (6.3) takes the form 

2 2 2

2 2 2 3

1
2 ( (6 140 ))

5

1
2 (6 140 )

15

x y ax dxy ay l l d xy

y x dx ax dy lx y l d y

= + + − + − −

= − + − − − + −

&

&

 (6.7) 

For the system (6.7), we now calculate 10η , and we have 

3 2 3 2 3 2 2 3 2 4 4 2

10

169 931 473 109 4459 20923

800 48 720 800 12 108
l d ad l a dl a l a d l a d lη = − − − + +  

So that  

( ) ( )2 3 3 3 2 3 2 4 4 21
4 4563 418950 142170 2943 8026200 4184600

21600
L l l d ad l a dl l a a d a d= − − − + +

and the system (6.2) is fine focus of order four. 

 

Theorem 8. For the system (6.2) 
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( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )
( )

3

2 6 4 2 8 2 3 5 2 4

2 4 3 2 4 2 5 6 2

8

0

1

2

3 140 6 15

4

5 7776160 32880 137715200 2097333 2097333 32880

6 ( 195094908 2163915 169384608 12440144640

24286787840 3222

L

L bc p

L sl

L lu ad l u

L l a d a d

L a l a l a l a a l l a l

L a l a l a l a l a l

a l

λ=

= −

= −

= − +

= − − +

= + + − + −

= − − − + +

− + 4 4 10 62400 362333440000 2163915 )a l a l+ +

 

 

For k = 0,12,3,4,5,6, L (k) was derived from 2 2.kη +  

Remark 3. In this case L (6) is derived from 14
η . 

Lemma 2. The origin of the system (6.2) is a fine focus of order seven if λ = 0 and ,p bc= and 

conditions (C) to (E) are satisfied. 

Theorem 9. For the system (5.7) 

( )

( )

( )

( ) ( )

( ) ( ) ( )3

0

1

2

3 140 6 15

4

L

L bc p

L sl

L lu ad l u

L l a d a d

λ=

= −

= −

= − +

= − − +

 

For k = 0,1,2,3,4,5,6, L (k) was derived from 2 2.kη +  
 

Lemma 3. The origin of the system (6.2) is a fine focus of order five if 0λ =  and

, 0,p bc s and d a= = = −  are satisfied. 

 

Theorem 10. For the system (6.2) 

( )

( )

( )

( ) ( )

( ) ( )2 2 3 3 2 2 2 4 4 2

0

1

2

3 140 6 15

1
4 4563 418950 142170 2943 8026200 4184600

21600

L

L bc p

L sl

L lu ad l u

L l l d ad l a dl l a a d a d

λ=

= −

= −

= − +

= − − − + +

 

For k = 0,1,2,3,4,5,6, L (k) was derived from 2 2.kη +  
 

Lemma 4. The origin of the system (6.2) is a fine focus of order five if 0λ =  and

, 0,p bc s and d a= = =  are satisfied. 
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