
Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

73

DEVELOPMENT OF EMBEDDED SOFTWARE FOR FLOWSTATION

METERING USING VB.NET WITH MCCDAQ BOARD: A CASE

STUDY OF PETROLEUM TRAINING INSTITUTE (PTI)

DEMONSTRATION FLOWSTATION

F. K. Opara

Electronic Computer Engineering

Department, Federal University of

Technology, Owerri, Imo State

NIGERIA.

G. N. Okorafor.

Electronic Computer Engineering

Department, Federal University of

Technology, Owerri, Imo State

NIGERIA.

nwaji2000@gmail.com

C. S. Ikpeazu

Electronic Computer Engineering

Department, Federal University of

Technology, Owerri, Imo State

NIGERIA.

ABSTRACT

This paper presents a case study of converting an old pneumatic metering system of a Flowstation

to a new system for digital display on a large screen. An analysis of the existing instrumentation

system was carried out, and appropriate hardware and software platforms were selected. The

system software was developed with MS Visual Studio 2010 and MS Access 2007. The Software

system was tested with McDaq demo Board and the result was successful and satisfactory.

Keywords: Embedded system, Flowstation, VB.NET, MS Access, Database, Framework.

INTRODUCTION

Measurement Computing Corporation (Mcc) 16bit Data Acquisition (DAQ) can be used for Original

Equipment Manufacturer (OEM), the original intended usage, and embedded computer [1]. Embedded

systems are computers which are part of a special purpose device of larger unit [2, 3], or self-contained

unit providing services to the unit [4]. In some cases, Embedded systems are electro-mechanical

products which relate hardware and software contained in a computer which is a part of the larger

system and providing non-computing features to Users [5] and in most cases relates with the

environment [4, 6]. In reality, embedded systems comprises of Reactive systems, Real-Time

constraints systems, and Data processing Capabilities [7]. Early embedded systems were mostly found

in aircrafts, space mission crafts, and missile guidance systems [2]. However, modern Embedded

systems can be found in Phones, Video systems, digital watches, microwave oven, traffic control

systems, industrial automation systems and many others such as Routers, firewalls, copiers, printers,

disk drives, calculators, Data Acquisition systems, and programmable logic controllers (PLCs) [2, 3].

All Embedded systems have both hardware and software constraints. Limited processing power,

memory, power usage in the case of sensor networks, storage facilities as well as timing and responses

[3, 8]. Embedded systems have found wide applications in nearly all the facets of Oil and Gas industry

[9] such as the use of intelligent Field Devices, which are normal control loop devices but

incorporated with local embedded computers and Supervisory control and Data Acquisition (SCADA)

system are used in production and phase separation facilities.[10, 11, 12, 13].

Advantages of Using Embedded System:

The embedded system in this paper has many advantages over the existing pneumatic systems in the

station in many parameters, such as accuracy, response time, resolution, and ability to be integrated

into a lager network such as field bus. The advantages are already summarized in Table1.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

74

Table1: Comparison between the existing and the proposed Systems

Parameter Pneumatic System Embedded System

Distance Not more than 600m Electromagnetic signal can travel to

any distance with repeaters in place

Accuracy Subjected parallax error Digital display more accurately

Ability to integrate into Distributed

Control Systems and Fildbuses

Not possible Can be integrated into Fieldbus and

Distributed Control Systems

Maintainability Bending and Installing pipes Wires are easily replaced and most of

the maintenance are herein software

based

Scalability Scalability limited More channels can be added with

ease

The Flowstation

A flowstaion is a treatment centre in an Oil field where fluid is collected with minimum pressure loss.

Here, the gas is separated from the oil and oil from water. Petroleum as produced from a reservoir is a

complex mixture of hundreds of different compounds of hydrogen and carbon, all with different

densities, vapour pressures and other physical characteristics, water, emulsion, and sediments. In most

cases, this mixture is at elevated temperature and pressure [14, 15].

Table 2: The taxonomy of the process Variables

Pressure Temperature

Line1 pressure Separator1 temperature

Line2 Pressure Separator2 temperature

Line3 pressure Separator3 temperature

Separator1 Pressure

Separator2 pressure

Separator3 pressure

Sediments from the reservoir include sand, clay, and silt; while contaminants are mostly made up of

dissolved salt, Carbon dioxide (CO2), and hydrogen sulphide (H2S). Separator is a major component

of a flowstation or surface production facilities and is manufactured in various shapes, namely;

vertical, horizontal, and spherical.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

75

The Petroleum Training Institute (PTI) demonstration flowstation was designed to simulate the real

field situation. It comprises of the flow lines from wells, the entry manifold where the flow lines are

diverted into three lines which feed the three horizontal separators, de-emulsifier plant, discharge lines

and other units. The process operation of the station is not discussed in this paper.

However, as the instrumentation system is completely pneumatic, observation shows that there are

only nine process variables of interest connected to meters mounted on a board at the monitoring

point. The variables are line pressures, separator pressures and separator temperature. The taxonomy

of the process variables are shown in Table2.

THE METHODOLOGY

This research involves both hardware selection and software development. The methodology used is

as stated below:

The hardware aspect:

*A visit to the flowstation for a comprehensive visual inspection; *Physically tracing the process

piping; *Physically tracing the pneumatic tubing connecting all the instruments; *Identifying process

variables of interest; and *Selection of hardware platform for the new system.

The description of the hardware is presented later in this paper.

The software aspect:

*Development of the system interface software; *Development of the sensor database; and *Testing of

the complete system using Demo board a software that accompanies Instacal, the MccDaq driver

This work intends to replace all pneumatic transmitters in the station with sensors. In the same vein,

all pneumatic transmission lines (tubing) will be replaced with twisted pair (TP) cables. Pneumatic

gauges will be replaced with an electronic display board. The data acquisition board is used as an

embedded computer which inputs sensors’ outputs into the computer in which the software hereby

developed is installed.

DEVELOPMENT OF THE SYSTEM

Embedded System Board For the embedded hardware platform, the Measurement Computing USB

1616FS was selected. It can sample 16 analogue input channels simultaneously at the rate of 50Kilo

samples per second per channel through one ADC for each channel. It has 8 digital I/O channels. It

operates with both 5V and 10V sensors. Also the choice of this USB 1616FS is adequate because the

flowstaion needs only 9 analogue input channels and 1 digital output channel. The board is made up of

one USB Microcontroller, 16 ADCs with buffers, and 32x16 6bit SRAM and few other units [17].

Measurement Computing Corporation (MCC) has open Universal library with reusable codes and

declaration [18, 19]. The universal library that accompanies instacal [19], the device driver, contains

many examples, whose codes can be modified to suit a particular solution.

Software Development:

The Software development process was split into two Phases, owing to the use of two development

environments. The Interface software was developed with Visual Studio 2010 (VB.NET) and the

Sensors database (Dbase) was developed with Microsoft Access 2007.

Development of Sensors Database:

 This procedure was carried out following data acquisition system database design. Databases are

classified as small, medium, and large. Generally, there are three popular platforms for Dbase

development, namely, Oracle, Sequential Query Language (SQL), and Access [20]. Their areas of

application and capacity building are shown in Table3. The Flowstaion metering station requires on

nine sensors as can be seen in table4. There are nine fields and nine records. This is a small Dbase

system. In general, all flowstation fall in small dbase systems. Hence, MS Access 2007 was used to

create the sensors relational database and datasets as shown in table4.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

76

Table3: Database Platform Taxonomy

Platform Area of Application

Oracle Large

SQL Medium

MS Access Small

The ID field contains the serial numbering of the sensors. This was done through the auto numbering

of MS Access. The second field describes the type of process; while the third field describes the type

of process variable. The fourth field is the channel number of each sensor; while fifth field is for

instantaneous sensors, outputs. The sixth and the seventh fields record the sensors’ lowest and highest

outputs respectively. The eighth and ninth fields are for the minimum and the maximum values of the

process variables respectively.

Table4: Database form in MS Access 2007 Version

StnSensors

S/N Sensor

Name

Description Channel

Number

Signal Low

Volt

High

Volt

Low

Val

High

Val

1 Line1press pressure sensor 1

2 Line2press pressure sensor 2
3 Line3press pressure sensor 3
4 Sep1press pressure sensor 4
5 Sep2press pressure sensor 5
6 Sep3press pressure sensor 6
7 Sep1temp Temp. sensor 7
8 Sep2temp Temp. sensor 8
9 Sep3temp Temp. sensor 9

Interface Software Development:

The interface software developed with VB.NET 2010 consists of three class forms and a module.

VB.NET is an object oriented programming language (OOP). It is rich in reusable codes.

Module1

Global Declarations

Initialize Board

Calculates Factor

Calculates offset

frmCalib Class

Initialization, Applies factor & Offset

Applies Calibration

Calculates values

Datagridview Control

Board Selection

Sampling Rate & Display

frmInterface Class

Calibration Tools

Units Tools

Exit Tool

Time & Date

Display

frmUnit Class

Applies Units of

Measurement

Figure1: The Software Structure

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

77

The parent class frmInterface, handles everything regarding to users interface. Module1 is used for

global variables declarations, global functions such as factor and offset computation and global board

initialization. frmCalib is call by frminterface when sensors calibration is required, recalculate and

reload factors. frmUnit is called by frmInterface for the imputation of units of measurement. These

relationships is shown in the structure of Figure1

OPERATION

When the software icon is double clicked, frminterface is displayed with black backcolour for beauty

and clarity in reading of the displayed characters. At this juncture, the pixel control is activated as well

as loading of time and date in timer click event. On load event and default units saved in settings are

loaded and displayed. The next operation is to select board, by clicking on sensor on the menu bar and

selecting calibration to display frmcalib. The default is the Demo board, software that comes with the

board driver. The numeric up-down in frmcalib is used to select the particular board, board1 in this

work. Calibration is carried out on the data grid view on frmcalib. By clicking apply, the new

calibration value is used under timer click (Sampling) and display codes in frmcalib to obtain process

variable values for display on frminterface. Same calibration procedure will take place in the case of

new variable ranges At this juncture; the database is updated with calibration parameters. The default

units are saved an area in registry called settings in this sequence; application (Metering), location

(Unit setting), value (The particular Unit), and default value (measurement unit for the variable).

Whenever new units are required frmUnit is called by clicking sensor on the menu bar, selecting unit

to display the form. The required units are typed into their respective textboxes, click apply to save in

settings. Since the values are in the registry, the program has to restart anytime the units are altered

When the above procedures are completed, also, when these procedures are not needed; the sensors are

sampled, a 9x9 array is created using timer tick event of frmcalib. Computation of factors, offset, and

process variable values are carried out using Module1 and frmcalib codes. The computed values are

displayed on the interface form. The database is updated accordingly. These procedures are

summarized in the flowchart (Figure2).

Figure2: The Flowchart

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

78

Design Methodology Forms:

The first stage was the creation of Visual Basic Windows Application project, named metering. The

next is the defining of the forms and there are four design forms, frmInterface Design, frmCalib

Design, and frmUnit Design were created for this project. Also designing with VB.NET requires

dropping an object from the toolbox on the form and manipulation of its properties using the property

table [21, 22, 23]. The following properties were mostly used: Name, Size, Text, Font, Forecolor,

Backcolor, Enable, and Anchor. The codes are written in frmInterface, frmCalib, Module1, and

frmUnit

Figure3: Interface Design

frmInterface Codes

Public Class frmInterface

Private Sub frmInterface_Activated(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Activated

 Dim pxw, pxh As Double

 pxw = My.Computer.Screen.Bounds.Width

 pxw = (pxw - Panel1.Width) / 2

 If pxw < 0 Then pxw = 0

 pxh = My.Computer.Screen.Bounds.Height

 pxh = (pxh - Panel1.Height) / 2

 If pxh < 0 Then pxh = 0

 Panel1.Location = New Point(pxw, pxh)

 End Sub

Private Sub frmInterface_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 frmCalib.Show()

 frmCalib.Hide()

 frmUnit.Show()

 frmUnit.Hide()

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

79

 CalculateFactor()

 lblUnit1.Text = GetSetting("Metering", "Unitsettings", "unit1", "psi")

 lblUnit2.Text = GetSetting("Metering", "Unitsettings", "unit2", "psi")

 lblUnit3.Text = GetSetting("Metering", "Unitsettings", "unit3", "psi")

 lblUnit4.Text = GetSetting("Metering", "Unitsettings", "unit4", "bar")

 lblUnit5.Text = GetSetting("Metering", "Unitsettings", "unit5", "bar")

 lblUnit6.Text = GetSetting("Metering", "Unitsettings", "unit6", "bar")

 lblUnit7.Text = GetSetting("Metering", "Unitsettings", "unit7", "degC")

 lblUnit8.Text = GetSetting("Metering", "Unitsettings", "unit8", "degC")

 lblUnit9.Text = GetSetting("Metering", "Unitsettings", "unit9", "degC")

 End Sub

Private Sub Timer1_Tick(By Val sender As System. Object, By Val e As System. Event Args)

Handles Timer1.Tick

 lblTime2.Text = Format(Now, "long time")

 lblDate2.Text = Format(Now, "long date")

 If Button3.Enabled = True Then

 Button3.Enabled = False

 Else

 Button3.Enabled = True

 End If

 End Sub

Private Sub Calibration Tool Strip MenuItem_Click (By Val sender As System. Object, ByVal e As

System. Event Args) Handles Calibration Tool Strip Menu Item. Click

 frmCalib.Show()

End Sub

Private Sub UnitsToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles UnitsToolStripMenuItem.Click

 frmUnit.Show()

 End Sub

 Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ExitToolStripMenuItem.Click

 End

 End Sub

End Class

frmCalib:

This is an additional class form with datagridview dragged into it from VB.NET ToolBox. mIt

connects the database in MS Access. It handles sensor calibration, sampling rate, and loading updates

of the data base. frmCalib is shown in figure4.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

80

Offset:

The standard output of most sensors is 4mA – 20mA. When terminated with 250ΩResistor in An

instrument produces 1V – 5V. However, there is another standard whichOutputs 0 – 20mA, which

translates to 1 – 10V respectively when terminated with 500ΩResistor [16]. In the first popular

standard, the zero value of the processVariable Corresponds to 4mA (1V). This is usually termed

offset in data acquisition

Calibration Factor:

In process Control Instrumentation, there is a signal range for the minimum value and the maximum

value which correspond to the minimum and maximum sendor output respectively as shown in figure.

Hence these definitions are applied.

HighVolt = the Maximun value of Sensor’s output

LowVolt = the minimum value of Sensor’s output

HighValue = the maximum expected value of the process variable (Sometimes referred to as

engineering value)

LowValue = the minimum expected engineering value

Factor is the slope of the graph (HighValue – LowValue)/(HighVolt – LowVolt) Which in

Datagridview = Currentcell(9,j) –currentCell(8,j)/Currentcell(7,j)- currentcell(6,j) Where(i, j) define

columns and rows respectively.

.Figure4: Datagidview Calib Design

frmCalib Codes:

The load event Sub, the DataGridView, and the Timer tick sub are reusable codes from MccDaq

Universal Library [19] modified for this application.

Public Class frmCalib

Imports Microsoft.VisualBasic

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

81

Imports System

Imports System.IO

Public Class frmCalib

Private Sub frmCalib_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 'TODO: This line of code loads data into the 'FlwStnSensorsDataSet.StnSensors' table. You can

move, or remove it, as needed.

 Me.StnSensorsTableAdapter.Fill(Me.FlwStnSensorsDataSet.StnSensors)

 initializeboard()

 CalculateFactor()

 End Sub

Private Sub DataGridView1_CellContentClick(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.DataGridViewCellEventArgs) Handles DataGridView1.CellContentClick

 Dim colIndex, rowIndex As Integer

 colIndex = DataGridView1.CurrentCell.ColumnIndex

 rowIndex = DataGridView1.CurrentCell.RowIndex

 If colIndex = 7 Then

 DataGridView1.Item(5, rowIndex).Value = DataGridView1.Item(4, rowIndex).Value

 End If

 If colIndex = 8 Then

 DataGridView1.Item(6, rowIndex).Value = DataGridView1.Item(4, rowIndex).Value

 End If

 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer1.Tick

 Dim signalRange As String = "5volts"

 Dim row As Integer

 Dim p As Integer

 Dim HighChan As Integer

 Count = NumPoints ' total number of data points to collect

 Rate = 390 ' per channel sampling rate ((samples per second) per channel)

 Options = MccDaq.ScanOptions.Default

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

82

 If signalRange = "5volts" Then

 Range = MccDaq.Range.Bip5Volts ' set the range to 0-5volts

 Else

 Range = MccDaq.Range.Bip10Volts ' set the range to 0-10volts

 End If

 AnaDaqBoard.BoardConfig.GetNumAdChans(HighChan)

 For p = 0 To HighChan - 1

 ULStat = AnaDaqBoard.AIn32(p, Range, MemHandleArray(p), 0) 'ULSTAT stores error info

from board initialisation

 AnaDaqBoard.ToEngUnits32(Range, MemHandleArray(p), VoltCount(p))

 volts(p) = CSng(VoltCount(p))

 Next

 row = DataGridView1.CurrentCell.RowIndex

 For i = 0 To 8

 DataGridView1.Item(4, i).Value = volts(i)

 Next

'Display values on line1press, line2press, line3press, sep1press, sep2press, sep3press, sep1temp,

sep2temp, and sep3temp

 frmInterface.lblRead1.Text = volts(0) * factor(1)

 frmInterface.lblRead1.Text = Val(frmInterface.lblRead1.Text) - offset(1)

 frmInterface.lblRead1.Text = Format(Val(frmInterface.lblRead1.Text), "##0.##")

 frmInterface.lblRead2.Text = volts(1) * factor(2)

 frmInterface.lblRead2.Text = Val(frmInterface.lblRead2.Text) - offset(2)

 frmInterface.lblRead2.Text = Format(Val(frmInterface.lblRead2.Text), "##0.##")

 frmInterface.lblRead3.Text = volts(2) * factor(3)

 frmInterface.lblRead3.Text = Val(frmInterface.lblRead3.Text) - offset(3)

 frmInterface.lblRead3.Text = Format(Val(frmInterface.lblRead3.Text), "##0.##")

 frmInterface.lblRead4.Text = volts(3) * factor(4)

 frmInterface.lblRead4.Text = Val(frmInterface.lblRead4.Text) - offset(4)

 frmInterface.lblRead4.Text = Format(Val(frmInterface.lblRead4.Text), "##0.##")

 frmInterface.lblRead5.Text = volts(4) * factor(5)

 frmInterface.lblRead5.Text = Val(frmInterface.lblRead5.Text) - offset(5)

 frmInterface.lblRead5.Text = Format(Val(frmInterface.lblRead5.Text), "##0.##")

 frmInterface.lblRead6.Text = volts(5) * factor(6)

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

83

 frmInterface.lblRead6.Text = Val(frmInterface.lblRead6.Text) - offset(6)

 frmInterface.lblRead6.Text = Format(Val(frmInterface.lblRead6.Text), "##0.##")

 frmInterface.lblRead7.Text = volts(6) * factor(7)

 frmInterface.lblRead7.Text = Val(frmInterface.lblRead7.Text) - offset(7)

 frmInterface.lblRead7.Text = Format(Val(frmInterface.lblRead7.Text), "##0.##")

 frmInterface.lblRead8.Text = volts(7) * factor(8)

 frmInterface.lblRead8.Text = Val(frmInterface.lblRead8.Text) - offset(8)

 frmInterface.lblRead8.Text = Format(Val(frmInterface.lblRead8.Text), "##0.##")

 frmInterface.lblRead9.Text = volts(8) * factor(9)

 frmInterface.lblRead9.Text = Val(frmInterface.lblRead9.Text) - offset(9)

 frmInterface.lblRead9.Text = Format(Val(frmInterface.lblRead9.Text), "##0.##")

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 Me.StnSensorsTableAdapter.Update(Me.FlwStnSensorsDataSet.StnSensors)

 CalculateFactor()

 End Sub

 Private Sub NumericUpDown1_ValueChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles nBoard.ValueChanged

 initializeboard()

 End Sub

End Class

The Module:

frmModule1 is used for declaration of global variables and objects used by more than one class. In this

paper, the classes referred to are, frmInterface and frmCalib. It also contains the method for factor

calculation and Board initialization. The codes are shown below.

frmModule1 Codes:

The declarations and Board initialization sub are reusable from the Universal Library modified for this

application [19].

Imports MccDaq

Module Module1

 Public parameter() As Double

 Public IniDigboard As String

 Public AnaDaqBoard As MccBoard

 Public regname As MccDaq.CounterRegister

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

84

 Public FOutDivider, FOutSource, Compare1, Compare2, LoadValue, TimeOfDay, ChipNum As

Integer

 Public Const NumPoints As Integer = 30000 ' Number of data points to collect

 Public Const FirstPoint As Integer = 0 ' set first element in buffer to transfer to array

 Public ADData(NumPoints) As System.UInt16 ' dimension an array to hold the input values

 Public UserTerm As Short ' flag to stop acquisition manually

 Public MemHandle, MemHandle2 As Integer

 Public MemHandleArray(16) As Integer

 Public ULStat, ULStat2 As ErrorInfo

 Public high_Value, low_Value, high_Volt, low_Volt As Double

 Public factor(16) As Double

 Public offset(16) As Double

 Public Range As New MccDaq.Range

 Public Options As New MccDaq.ScanOptions

 Public Rate As Integer

 Public Count As Integer

 Public VoltCount(16) As Double

 Public volts(16), avolts(32) As Single

 Public Sub initializeboard()

 AnaDaqBoard = New MccDaq.MccBoard(frmCalib.nBoard.Value)

 Dim AnaBoardName As String = AnaDaqBoard.BoardName

 AnaDaqBoard.FlashLED()

 ULStat = MccDaq.MccService.DeclareRevision(MccDaq.MccService.CurrentRevNum)

 Mem Handle = MccDaq.MccService.WinBufAlloc32Ex(NumPoints)

 If Mem Handle = 0 Then

 AnaBoardName = ULStat. Message

 End If

 frmCalib.lblmsg.Text = Ana Board Name

 End Sub

 Public Sub Calculate Factor()

 For J As Integer = 0 To 8

 If IsDBNull(frmCalib.DataGridView1.Item(8, J).Value) Then

frmCalib.DataGridView1.Item(8, J).Value = 0

 If IsDBNull(frmCalib.DataGridView1.Item(7, J).Value) Then

frmCalib.DataGridView1.Item(7, J).Value = 0

 If IsDBNull(frmCalib.DataGridView1.Item(6, J).Value) Then

frmCalib.DataGridView1.Item(6, J).Value = 0

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

85

 If IsDBNull(frmCalib.DataGridView1.Item(5, J).Value) Then

frmCalib.DataGridView1.Item(5, J).Value = 0

 high_Value = Val(frmCalib.DataGridView1.Item(8, J).Value)

 low_Value = Val(frmCalib.DataGridView1.Item(7, J).Value)

 high_Volt = Val(frmCalib.DataGridView1.Item(6, J).Value)

 low_Volt = Val(frmCalib.DataGridView1.Item(5, J).Value)

 If (high_Volt - low_Volt) = 0 Then high_Volt = 1

 factor(Val(frmCalib.DataGridView1.Item(0, J).Value)) = (high_Value - low_Value) /

(high_Volt - low_Volt)

 offset(Val(frmCalib.DataGridView1.Item(0, J).Value)) =

factor(Val(frmCalib.DataGridView1.Item(0, J).Value)) * high_Volt

 offset(Val(frmCalib.DataGridView1.Item(0, J).Value)) =

offset(Val(frmCalib.DataGridView1.Item(0, J).Value)) - high_Value

 Next J

 End Sub

End Module

frmUnit:

This class form handles the application of measurement unit to frmInterface and is shown in figure5.

Here the units of measurement for process variables are entered. The units are typed into their

respective textbox, apply, and saved in setting. However, at startup, the default units loaded to the

interface

Figure5: frmUnit

frmUnit Codes

PUBLIC CLASS FRMUNIT

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

 SaveSetting("Metering", "Unitsettings", "unit1", TextBox1.Text)

 SaveSetting("Metering", "Unitsettings", "unit2", TextBox2.Text)

 SaveSetting("Metering", "Unitsettings", "unit3", TextBox3.Text)

 SaveSetting("Metering", "Unitsettings", "unit4", TextBox4.Text)

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

86

 SaveSetting("Metering", "Unitsettings", "unit5", TextBox5.Text)

 SaveSetting("Metering", "Unitsettings", "unit6", TextBox6.Text)

 SaveSetting("Metering", "Unitsettings", "unit7", TextBox7.Text)

 SaveSetting("Metering", "Unitsettings", "unit8", TextBox8.Text)

 SaveSetting("Metering", "Unitsettings", "unit9", TextBox9.Text)

 End Sub

End Class

RESULT AND DISCUSSION

The complete system was tested using MccDaq Demo Board running on Windows 7 operating system.

The results were accurate to the two decimal places. The result is shown in figure6.

Figure6: Result of the Simulation

The result shown in figure6 proves that the system will work perfectly when deployed to an industrial

location. Industrial sensors are manufactured to give high accuracy. There outputs are usually an

electrical quantity, voltage, which was obtained from the Demo board. The display system can be a

giant display board mounted outside or plasma unit mounted in doors. Since the interface form has a

runtime calibration of sensors and a provision for changing process variable units. The system can be

deployed to any field irrespective of the number of variable because the codes are reusable.

CONCLUSION

This work was carried out using Petroleum Training Institute (PTI), Demonstration Flowstation,

Effurun, Delta State in Nigeria as a case study for developing a metering System which uses electronic

display board instead of gauges for accuracy and convenience. The Software was developed, with the

codes of the four VB.NET form well written, tested, and results show that what we developed is found

efficient and when deployed to the Flowstation we designed it for, produces expected results.

The advantages of this design over the existing pneumatic system are: *the meters location is not

limited by distance since electrical signals can be processed and transmitted to any length; *the display

system is more accurate because the data is 16bit wide and resolution is high; and *the system can be

integrated into Distributed control systems and Fieldbus network. The disadvantage is that both the

DAQ board and computer must be housed in a damp-free and dust proof air-conditioned environment.

Considering the cost of pneumatic transmitters, tubing, gauges, and maintenance, with respect to

sensors, twisted pair cable, and electronic display, our system is more economical.

However, for the system to operate efficiently with minimal down time seriously recommend that the

following precautions should be taken:

a. A small hut should be erected in the Flowstation to house the electronic components. A Porto

cabin may as well serve the same purpose.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

87

b. A stable power supply is needed to power the device. A solar powered system will supply a

constant power with minimal fluctuations.

c. Calibration should be carried out by well trained staff. Operators should not in any way

temper with the codes, this could lead system malfunctioning.

REFERENCES

1. Measurement Computing (OEM & Embedded System) http://www.mccdaq

.com/products/db.3000ubs.htm

2. Florain Lecher and Daniel Walter (2006) “An Introduction to Embedded Systems”

3. Edward Lee (2002) “Embedded Software” Advance in Computers, Academic Press, London,

Vol. 56

4. J.A Cook and J.S. Fraudember (2007) “Embedded SoftwareArchitecture” EECS 461.

5. Juho Jaalinoja (2004) “Requirements Implementation in Embedded Software Development”

VT Publications 526.82p+aa.7p

6. David Urting (2002) “A Tool for Component Based Design of Embedded Software

7. Louis Gomes and Aniko Costa (2004) “Embedded Systems: Introductory Course Supported

by Remote Experiment” , Portugal

8. Bas Graaf et al (2003) “Embedded Software Engineering: The State of the Practice” IEEE

Software, Nov-Dec, 2003, pp 61 – 69

9. Mehala Ciortea (2004) “Aspects Regarding the Types of Process Control Systems”

Proceedings of the International Conference on Theory and Applications of Mathematics and

Informatics (ICTAMI 2004), Thesoloniki, Greece, PP 90 – 95

10. H. Dale Beggs (1984) “Gas production Operations”. OGCI and Petroskills Publication, Tulsa,

OK. USA, PP 219 – 234.

11. David A. T. Donohue and Karl R. Lang (1984. “Production Technology and Reservoir

Management for the Geologist” GL302, IHRDC Video Product Sales, Boston, MAUSA, PP

25 – 52

12. Flanker Kuo (2008) “ Using Industrial Ethernet in the Oil and Gas Industry” Moxa White

Paper ,Moxa Inc.

13. M. Sanchez et al (2005) “Unified automation with digital plant architecture improves gas

plant and gathering system operation” Hyrocarbon Processing, pp 39 – 44

14. H. Dale Beggs (1984) “Gas production Operations”. OGCI and Petroskills Publication, Tulsa,

OK. USA, PP 219 – 234.

15. David A. T. Donohue and Karl R. Lang (1984. “Production Technology and Reservoir

Management for the Geologist” GL302, IHRDC Video Product Sales, Boston, MAUSA, PP

25 – 52.

16. Curtis D. Johnson (1977) “Process Control Instrumentation Technology” John Wiley & Sons,

NY, USA

17. Measurement Computing (2010) “USB-1616FS User’s Guide” Document Revision 7.

18. Measurement Computing “Quick Start Guide” Measurement Computing Corporation, USA.

19. Measurement Computing (2008) “Universal Library Help”

20. Asim Abbasi (2005) “Microsoft Access 2007 Step by Step “ Takven Inc. South River, NJ,

USA.

Academic Research International

ISSN-L: 2223-9553, ISSN: 2223-9944

Vol. 2, No. 2, March 2012

Copyright © 2012 SAVAP International

www.savap.org.pk
www.journals.savap.org.pk

88

21. Thearan Willis, Brayan Newsome “Beginning Microsoft Visual Studio 2010”

www.axishooting.net/books/Visual%20Basic/wrox.Begining.Visual.Basic.2010pdf

22. Cameron Wakefield, Henk-Evert Sonder, Wei Meng Lee (Series Editor) (2001) “VB.NET

Developer’s Guide” syngress publishing Inc. MA, USA

23. Gary Cornell, Jonathan Morrison (2002) “Programming VB.NET. A Guide for Experienced

Programmer” www.spsamraj.weebly.com/upload/3/4/6/4/3464757/vb.netpdf

24. O'Reilly (2002)”Programming Visual Basic .NET “ Dave Grundgeiger Publisher First

Edition.

25. Alfred C Thompson II “Microsoft Visual Basic .NET Projects for the Classroom”

26. Indian Community Initiative “.NET Tutorial for Beginners”

27. Robin A. Reynolds-Haertle (2002) “OOP with Microsoft Visual Basic .NET and Microsoft

Visual C# Step by Step” Microsoft Press

