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ABSTRACT 
 

There is a growing interest in electric vehicles due to environmental concerns. Recent efforts are 

directed toward developing an improved propulsion system for electric vehicles applications. This 

paper is aimed at developing the system design philosophies of ANFIS observer as speed sensor .Now 

the induction motor is growing up to use as propulsion in the electric vehicles.  The simple method to 

develop observer for detects the speed of Induction motor as propulsion in the electric vehicle is 

proposed in this paper, vector control method is one’s of the method which developing in this paper. 

Direct field-oriented induction motor drive system need rotor flux observer and rotor angular speed 

identifier. ANFIS is used for identifying parameter dynamics and system variable estimation, linear 

either non-linear. ANFIS with back propagation learning algorithm has applied to estimate flux rotor 

and identify rotor angular speed of three-phase induction motor. The simulation result is found well 

for the speed up to 200 rpm, and no good result for the speed less than 200 rpm.  There is a growing 

interest in electric vehicles due to environmental concerns. Recent efforts are directed toward 

developing an improved propulsion system for electric vehicles applications. This paper is aimed at 

developing the system design philosophies of ANFIS observer as speed sensor. Now the induction 

motor is growing up to use as propulsion in the electric vehicles. The simple method to develop 

observer for detects the speed of Induction motor as propulsion in the electric vehicles are proposed 

in this paper, direct field-oriented is one’s of the method which developing in this paper. Direct field-

oriented induction motor drive system need rotor flux observer and rotor angular speed identifier. 

ANFIS is used for identifying parameter dynamics and system variable estimation, linear either non-

linear. ANFIS with back propagation learning algorithm has applied to estimate flux rotor and 

identify rotor angular speed of three-phase induction motor. The simulation result is found well for 

the speed up to 200 rpm and no good result for the speed less than 200 rpm. 

Keywords: Observer, Vector control, speed sensor observer, ANFIS 

 

INTRODUCTION 

Automobile manufacturers are actively studying possibilities of electric vehicles for widespread 

practical use. However, there are a variety of problems that must be solved for electric vehicles , one’s 

of the problem is how to measure the speed of induction motor as propulsion. The control system for 

induction motor has the problem for uncertainly parameters, for this case considered the controller is 

known structure and uses the values of the state variable. However, this causes a new problem, cores 

easily saturate when the primary currents flowing in the winding are increased, because the primary 

and secondary iron core sizes for the motors must be made smaller. This leads to difficulties in 

accurate and stable torque control of the motor in regions where the iron cores of the motor is 

saturated. But some state variables cannot be measured, such as rotor flux, to solving this problem,   

the observer to estimate the state variable that cannot be measured is needed.  A flux observer based 

on ANFIS will be used to estimate the flux, for identifying motor induction angular speed. Automobile 

manufacturers are actively studying possibilities of electric vehicles for widespread practical use . 
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However, there is a variety of problems that must be solved for electric vehicles, one’s of the problem 

is how to measure the speed of induction motor as propulsion. The control system for induction motor 

has the problem for uncertainly parameters, for this case considered the controller is known structure 

and uses the values of the state variable. However, this causes a new problem; cores easily saturate 

when the primary currents flowing in the winding are increased, because the primary and secondary 

iron core sizes for the motors must be made smaller. This leads to difficulties in accurate and stable 

torque control of the motor in regions where the iron cores of the motor is saturated. But some state 

variables cannot be measured, such as rotor flux, to solving this problem, the observer to estimate the 

state variable that cannot be measured is needed. A flux observer based on ANFIS will be used to 

estimate the flux, for identifying motor induction angular speed. 

 The state equations for induction motor are developed by using dq model, and it can be expressed as 

following equation in the stationary reference frame.  
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rs RR ,  : Stator and rotor resistance 

 
rs LL ,  : Stator and rotor self inductance 

 M  :  Mutual inductance 
 σ  : Leakage coefficient, 

rs LLM
2

1−=σ  

 
rτ  : Rotor time constant, rrr RL /=τ  

 
rω  : Motor angular speed 

 

THEORY AND SYSTEM DESIGN 

A. Adaptive Networks of ANFIS System 

An adaptive network is a multilayer feed forward network in which each node performs a particular 

function (node function) on incoming signals using a set of parameters specific to this node [3].  The 

form of node functions may vary from node to node, and the choice of each node function depends on 

the overall function, which the adaptive network is designed to implement. To reflect different 

capabilities, both circle and square nodes in an adaptive network is used. A square node (adaptive 

node) has modifiable parameters while a circle node (fixed node) has none. The parameter set of an 

adaptive network is the union of the parameter sets of each adaptive node. In order to achieve a desired 
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input-output mapping, these parameters are updated according to given training data and a gradient-

based update procedure described below. Suppose that a given adaptive network has L layers and layer 

l (l = 0,1,...L; l = 0 represents the input layer) has N(l) node. Then the output and function of node i (i 

= 1,...,N(l)) in layer l can be represented as xl,i and  fl,i , as shown in the figure 1.  Since the output of a 

node depends on the incoming signals and the parameter set of the node, we have the following 

general expression for the node function: 
 

x l,i = f l,i  (x l-1,1,....,x l-i,N(l), α, β, γ,...)                                                                                                       (4) 

α,β,γ  are the parameters of this node. 
 

Assuming that the given training data set has P entries, we can define an error measure for the 

pth (1< = p < = P) entry of the training data as the sum of squared error : 

2
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where dk : the kth component of the pth desired output vector, xL,k : the kth component of the actual 

output vector  produced by presenting the pth input vector to the network. For notational simplicity, 

we omit the subscript p for both dk and xL,k ) Thus our task here is to minimize an overall error 

measure, which defined as 
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Figure 1. Feed forward adaptive network 

The error signal l , iε is defined as the derivative of the error measure Ep with respect to the output of 

node i in layer l,  
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This expression was called the ordered derivative by Werbos. The error signal for the ith output node 

at layer L could be calculated directly 
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For the internal node at the ith position of layer l, the error signal can be derived by the chain rule 
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Where 0 <= l <= L-1  

For any l and i (0 < = l < = L and 1 < = i < = N(l)) the error signal can be found by first applying 

Equation (8) once to get error signals at the output layer, and then applying Equation (9) iteratively 
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until we reach the desired layer l. The underlying procedure is called back propagation since the error 

signals are obtained sequentially from the output layer back to the input layer. 

 The gradient vector is defined as the derivative of the error measure with respect of each 

parameter. If α is a parameter of the ith node at layer l, 
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The derivative of the overall error measure E with respect to α  
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The update formula for the generic parameter α 
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Where η    is the learning rate, which can be further expressed as 
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where κ   is the step size, the length of each transition along the gradient direction in the parameter 

space. Usually we can change the step size to vary the speed of convergence. 

 
B. Adaptive Neuro-Fuzzy Inference Systems 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a class of adaptive networks that are 

functionally equivalent to fuzzy inference systems.   Structurally, the only limitation on the network 

configuration is that it should be feed forward type if we do not want to use the more complex 

asynchronously operated model. The fuzzy inference system under consideration has two inputs x and 

y, and one output z is assumed.  For a first order Sugeno fuzzy model, a common rule set with two 

fuzzy if-then rules is expressed such as the following model: 

 
1 : If x is A1 and y is B1, then f1 = p1x+q1y+r1 

2 : If x is A2 and y is B2, then f2 = p2x+q2y+r2 
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Figure 2. A two input first order Sugeno fuzzy model with two rules 

 

Figure 2 illustrates the reasoning mechanism for this Sugeno model, the corresponding equivalent 

ANFIS architecture is as shown in figure 3 and  the output of the  ith node in layer l as Ol,i  

 



Academic Research International 

  

ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol.  2,  No. 1,  January  2012 

 

Copyright © 2012 SAVAP International 

www.savap.org.pk  
www.journals.savap.org.pk        

47 

 

A1

A2

B1

B2

x

y

layer 1 layer 2 layer3 layer  4

w1

w2

x  y

x  y

w2f2

w1f1

f

wi fi

wi

layer  5

 
 

Figure 3. Equivalent ANFIS architecture 
 

Layer 1: Every node i in this layer is an adaptive node with a node function 

Ο1,ι =  � Αι(ξ)  φορ ι = 1, 2, ορ 
ΟΟΟΟ1,ι 1,ι 1,ι 1,ι = = = = ���� Βι−2 Βι−2 Βι−2 Βι−2(ψ),(ψ),(ψ),(ψ),  for i = 3, 4 
where x (or y) is the input to the node i and Ai (or Bi-2) is a linguistic variable. In other words, O1,i is the 

membership grade of a fuzzy set A (=A1, A2, B1, B2) and it specifies the degree to which the given 

input x (or y) satisfies the quantifier A. Here the membership function  for A can be any appropriate 

parameterized membership function, such as Gaussian function: 
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where {ai, bi} is the parameter set. As the values of there parameters change, the Gaussian-shaped 

function varies accordingly. Parameters in this layer are preferred to as premise parameters. 

Layer 2 : Every  node on this layer is a fixed node ,whose output is the product of all the incoming 

signals 

 

        O2,i = wi = � Ai(x) � Bi(y) i = 1, 2                                                                  (15) 

 
Each node output represents the firing strength of a rule.   

Layer 3 : Every node in this layer is a fixed node labeled N. The ith node calculates the ratio of the ith 

rule’s firing strength to the sum of all rule’s firing strengths 

 

       O3,i = wi fi = wi (pix + qiy + ri)                                                                   (16) 
{pi, qi, ri} is the parameter set of this node, known as consequent parameters. 

 
Layer 4 : The first node in this layer computes the output of layer 3, the second node below computes 

the normalized firing strength of layer 2. 

Layer 5: The single node in this layer is a fixed node, which computes the overall output as the 

division of the incoming signals: 
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∑ ===
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DESIGN AND EXPERIMENT 
 
The observer was designed to estimate some induction motor outputs that can not be directly 

measured.  Observer performance was measured by the difference between induction motor output and 

observer. More less the difference then can be said that observer already has high performance. 

Training data taken while the overall system simulation running without the observer. The induction 

motor driven by PWM Inverter and proportional speed controller with gain=1, at the set point 250 
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rad/s. Simulation run for 5000 iteration, so we can get 5000 pairs data. This data used for find the 

fuzzy inference system and the training. 

 

A. Fuzzy Inference System Design 

The Gaussian function is used in this simulation for its smoothness, instead of triangular shape. We do 

not have domain knowledge from a human operator’s point a view about the observer, then the 

number of fuzzy if-then rules has to be decided by trial and error. The flux observer and angular speed 

identifier is implemented as ANFIS with four inputs on each. With subtractive clustering method, we 

have eight membership function for each input, and eight rules for each observer and identifier. 

Though the number of fuzzy rules can be more than eight, the simulation indicates eight rules are 

enough for identification. 

 

B. Training 

To speed up the convergence, we follow a strict gradient descent in the sense that each transition of the 

parameters will lead to a smaller error measure. If the error measure increases after parameter update, 

we back up to the original point in the parameter space and decrease the current step size by half. This 

process is repeated until the weight update leads to a smaller error measure. However, this step size 

update rule tends to use a small step size if the error measure surface encountered in the first few 

updates is not smooth. Therefore we multiply the step size by 4 after observing three consecutive 

transitions without any backup actions. The initial step size in the simulation is 2 and the learning 

process stops whenever the number of epoch has given reached. As shown in the figure 4 is off-line 

configuration of the rotor flux observer, figure 5 for rotor angular speed identifier. On-line 

configuration at figure 6 shows us that estimated flux from flux observer make the input for rotor 

angular speed identifier together with stator current. 

Figure 4. Training scheme of observer 

 

Figure 5. Training scheme of identifier 

 

 
Figure 6. Configuration of flux observer  and speed identifier at the simulation 
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RESULT AND DISCUSSION 

The validation stage, observer and identifier is applied to connecting with induction motor, as shown 

the  following figure 7. Time sampling 0.00005 seconds, motor were running for 0.5 seconds.  

 

 

Figure 7. overall system used for simulation 

 

Parameters used for observer and identifier:  
 

Table 1. Parameters of observer and identifier 

 

Parameter I II III 

Total Nodes of the input layer 32 32 32 

Total Nodes of the 1
st
 hidden 

layer 

8 8 8 

Total Nodes of the 2
nd

 hidden 

layer 

8 8 8 

Total Nodes of the output layer 1 1 1 

Total  Parameters 104 104 104 

Total Training data pairs 5.000 5.000 5.000 

Epoch  200 500 1000 

 
 

The investigated simulation is done by using the ANFIS composition which determined in the table 1, 

the standard Error Estimation (SEE) is found  in the first training 200 epoch results SEE direct rotor 

flux 0.0437 Wb, SEE quadratur rotor flux 0.0412 Wb, and  SEE rotor angular speed  identifier 19.2394 

rad/s, the graphic of simulation result  is shown in the fig 8 for direct rotor flux estimation , fig.9  for 

the quadrature rotor flux estimation and speed angular is shown in the Fig.10.  

 

 
Figure 8. Simulation results for direct rotor flux estimation with training 200 epochs 
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Figure 9. Simulation results for quadrature rotor flux estimation with training 200 epochs 

 
 

 
Figure 10  Simulation results for rotor angular speed estimation with training 200 epochs 

 
 
 

CONCLUSION 

The ANFIS observer is completely simulated for identify the speed induction motor and the results 

show that rotor flux observer and rotor angular speed identifier can estimate flux rotor and rotor  

angular speed. Thus rotor flux observer and rotor angular speed identifier shown a good performance 

by using the back propagation learning method.. The problem is for the speed under 200 rpm, the 

observer cannot estimate clearly. 

 

Rating and Parameters of Induction Motor Used for Simulation 
 

10 Watt , 115 Volt, 2 poles, 60 Hz 

Rs  = 176    [Ohm] 
Rr = 190    [Ohm] 

                                                         Ls = 3.079     [H] 

                                                         Lr = 3.31    [H] 

                                                         M= 3.21                  [H] 

 J = 0.0000105    [kg.m2] 

      Kd = 1.49e-5        [kg.m
2
 / s] 
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