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ABSTRACT 
 

The numerical studies are performed to examine the micropolar fluid flow past an infinite vertical 

heated generation in a magnetic field. Finite difference technique is used as a tool for the numerical 

approach. The micropolar fluid behavior on two- dimensional unsteady flow has been considered and 

its non similar solution have been obtained. No similar equations of the corresponding momentum, 

angular momentum, energy and continuity equations are derived by employing the usual 

transformations. The dimensionless non similar equations for momentum, angular momentum, energy 

equation and continuity equations are solved numerically by finite difference technique. The effects on 

the velocity, microrotation, the spin gradient viscosity, Prandtl number, Grashoff number and 

Eckert number of the various important parameters entering into the problem separately are 

discussed with the help of graphs. 

Keywords: Magnetohydrodynamics(MHD), Micropolar Fluid, Heat Generation, Vertical Plate.   

 

 

INTRODUCTION 

 

Because of the increasing importance of materials flow in industrial processing and elsewhere and the 

fact shear behavior cannot be characterized by Newtonian relationships, a new stage in the evaluation 

of fluid dynamic theory is in the progress. Eringen(1966) proposed a theory of molecular fluids taking 

into account the internal characteristics of the subtractive particles, which are allowed to undergo 

rotation. Physically, the micropolar fluid can consists of a suspension of small, rigid cylindrical 

elements such as large dumbbell-shaped molecules. The theory of micropolar fluids is generating a 

very much increased interest and many classical flows are being re-examined to determine the effects 

of the fluid microstructure. The concept of micropolar fluid deals with a class of fluids which exhibit 

certain microscopic effects arising from the local structure and micromotions of the fluids elements. 

These fluid contain dilute suspension of rigid macromolecules with individual motions that support 

stress and body moments and are influenced by spin inertia. Micropolar fluids are those which contain 

micro-constituents that can undergo rotation, the presence of which can effect the hydrodynamics of 

the flow so that it can be distinctly non-Newtonian. It has many practical applications, for example 

analyzing the behavior of exotic lubricants, the flow of colloidal suspensions, polymetric fluids, liquid 

crystals, additive suspensions, human and animal blood, turbulent shear flow and so forth. 

Peddision and McNitt(1970) derived boundary layer theory for micropolar fluid which is important in 

a number of technical process and applied this equations to the problems of steady stagnation point 

flow, steady flow past a semi-infinite flat plate. Eringen (1972) developed the theory of thermo 

micropolar fluids by extending the theory of micropolar fluids. The above mentioned work they have 

extended the work of El-Arabawy (2003) to a MHD flow taking into account the effect of free 

convection and micro rotation inertia term which has been neglected by El-Arabawy (2003). However, 

most of the previous works assume that the plate is at rest.  

Quite recently, a numerical study of steady combined heat and mass transfer by mixed 

convection flow past a continuously moving infinite vertical porous plate under the action of 
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strong magnetic field with constant suction velocity, constant heat and mass fluxes have been 

investigated by Alam et. al.(2008). For unsteady two dimensional case, the above problem 

becomes more complicated. These type of problems play a special role in nature, in many 

separation processes as isotope separation, in mixtures between gases, in many industrial 

applications as solidification of binary alloy as well as in astrophysical and geophysical 

engineering. 

GOVERNING EQUATIONS: 

The generalized Continuity equation, Momentum equation, Angular Momentum equation, Energy 

equation are together with the Ohm’s law and Maxwell’s equations form the basis of studying 

Magneto Fluid Dynamics (MFD)  as follows: 

The continuity equation: 
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The angular momentum equation: 
2 2 2
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The energy equation: 
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  Considering an unsteady flow of a fluid along 0y = in a rotating system.            

 

The continuity equation: 
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The momentum equation: 
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The angular momentum equation: 
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The energy equation: 
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Since the plate occupying the plane 0y =  is of infinite extent and the fluid motion is steady all 

physical quantities will depends only upon x  and y .    

        

                                           
         

                                         Figure 1. Boundary layer development on a vertical plate 
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Therefore the equations (7) to (12) becomes 
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Let, viscosity of the fluid be small and let δ  be small thickness of the boundary layer. Let, 1ε <<  be 

the order of magnitude ofδ , i.e., ( )O δ ε= , Let the order of magnitude of ,u χ  and Γ  are one i.e.   

( ) 1, ( ) 1, ( ) 1, ( ) 1O u O O O Tχ= = Γ = = . 

Then the order of magnitude of v and y  are ε and the order of magnitude of t is one, 

i.e. ( ) , ( ) & ( ) 1O v O y O tε ε= = =  

 

Hence, 
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Since the viscosity is very small, so neglecting the small order terms with the absence of the external 

force, we have from equations (13)-(17) 

0
u v

x y

∂ ∂
+ =

∂ ∂
                                                   (18)                                                                      

' 22

0

2
( )

uBu u u u
u v g T T

t x y y y

σχ χ
β υ

ρ ρ ρ
∞

  ∂ ∂ ∂ ∂ ∂Γ
+ + = − + + + −  

∂ ∂ ∂ ∂ ∂  
 (19)    

2

2

u
u v

t x y j y j y

γ χ

ρ ρ

∂Γ ∂Γ ∂Γ ∂ Γ ∂
+ + = −

∂ ∂ ∂ ∂ ∂
                                                                                         (20)                                     

2

2

p

T T T k T
u v

t x y C yρ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                                                                                                   (21) 

The boundary conditions for the problem are:  

at 0; 0; 0; 0; 0u v Tτ = = = Γ = =   every where  
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at 0τ =
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MATHEMATICAL FORMULATION 

Since the solutions of the governing equations (18)-(21) under the initial conditions (22) will be based 

on the finite difference method it is required to make the said equations dimensionless. For this 

purpose we now introduce the following dimensionless quantities 
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The continuity equation : 
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The momentum equation: 
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The angular momentum equation: 
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Energy equation: 

2

2

1

r

T T T T
U V

X Y P Yτ

 ∂ ∂ ∂ ∂
+ + =  

∂ ∂ ∂ ∂ 
                                                                                        (26) 

Boundary conditions  

at, 0, 0, , 0, 0U V O Tτ = = = Γ = =  everywhere                                                                (27)                                            



Academic Research International 

  

ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol.  2,  No. 1,  January  2012 

 

Copyright © 2012 SAVAP International 

www.savap.org.pk  
www.journals.savap.org.pk        

65 

 

                                                                                                                                

                                       
(i+1,j-1)  

                                                                 (i+1,j)       (i+1,j+1)  

     

0, 0, 0, 0 0

0 0, 0, 1, 1 0

0, 0, 0, 0

U V T at X

U V T at Y

U V T at Y

τ

 = = Γ = = =
  

> = = Γ = = = 
 

= = Γ = = → ∞  

                                                      (28)  

NUMERICAL SOLUTIONS 
 

Now we attempt to solve the governing second order nonlinear coupled dimensionless partial 

differential equations with the associated initial and boundary conditions. The only difference between 

the two methods is that the implicit finite difference method being unconditionally stable is less 

expansive from the point of view of computer time. From the concept of the above discussion, for 

simplicity the explicit finite difference method has been used to solve equations (23)-(26) subject to 

the conditions given by (27) and (28).To obtain the difference equations the region of the flow is 

divided into a grid or mesh of lines parallel to X and Y axis is taken along the plate and Y-axis is 

normal to the plate.  

Here we consider that the plate of height max 100X =  i.e. X varies from 0 to 100 and regard max 25Y =  

as corresponding to Y → ∞ i.e. Y varies from 0 to 25. There are m=125 and n=125 grid spacing in the 

X and Y directions respectively as shown in figure below:  
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                      i=0  
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j+1
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Figure 2. Finite difference space grid.
 

 

It is assumed that X, Y∆ ∆ are constant mesh sizes along X  and Y  directions respectively and taken 

as follows, X=0.8(0 100)x∆ ≤ ≤  

                                          =0.2(0 25)Y y∆ ≤ ≤  

at, 
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with the smaller time-step, 0.05∆τ = Now, ��, �� & Γ� denote the values of U,V &  at the end of time  

step respectively . Using the explicit finite difference approximation. We have, 
 

Continuity equation: 
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Angular momentum equation: 
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And the initial and boundary conditions with the finite difference scheme are 
0 00 0
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Where, L → ∞  

Here the subscripts i and  designate the grid points with x and y coordinates respectively. During any 

one time-step, the coefficients U
,� and V
,� appearing in equations (29)-(32) are treated as constants. 

Then the end of anytime step 
�, the new velocity U� and ��, at all interior nodal points may be 

obtained by successive applications of equations (29) and (30) respectively. This process is repeated in 

time and provided the time-step is sufficiently small, U and V should eventually converge to values 

which approximate the steady state solution of equations (23)-(27).  

RESULTS  

In this report, the effects of unsteady micropolar fluid behavior on a heated plate have been 

investigated using the finite difference technique.  To study the physical situation of this problem, we 

have computed the numerical values by finite difference technique of velocity, micrirotation and 

temperature effect at the plate. It can be seen that the solutions are affected by the parameters namely, 

Microrotation parameter ( )∆ , Spin gradient viscosity parameter ( )Λ , Magnetic parameter ( )M , the 

vortex viscosity parameter ( )λ , Grashof Number ( )rG  and Prandtl number ( )rP . The main goal of 

the computation is to obtain the steady state solutions for the non-dimensional velocity U, 
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microrotation ′Γ and temperature T ′  for different values of Microrotation parameter ( )∆ , Spin 

gradient viscosity parameter ( )Λ , the vortex viscosity parameter ( )λ , Grashof Number ( )rG , Prandtl 

number ( )rP .  

DISCUSSION 

For these computations the results have been calculated and presented graphically by dimensionless 

time 10τ =  up to 80τ = . The results of the computations show little changes for 10τ =  to 60τ = . 

But while arising at 70τ =  and 80  the results remain approximately same but microrotation. Thus 

the solution for 80τ =  are become steady-state. Moreover, the steady state solutions for transient 

values of U , ′Γ  and T ′  are shown in figures (3-26), for time 10,20,30,40,50,60,70,80τ =  

respectively. The values of Microrotation parameters fixed. Whereas, figures (3-10) show the velocity 

profile for different values of Grashof Number ( 0.2,0.4,0.6)rG =   at time 

10,20,30,40,50,60,70,80τ =  respectively. From this figures it is observed that the velocity profile 

increase with the increase of Grashof Number ( )rG , and the velocity profiles are going upward 

direction. While arising at 70τ = and 80  the solutions become steady-state. Other important effects 

of microrotations are shown in figures (11-18) for different values of Spin gradient viscosity parameter 

( )Λ  at time 10,20,30,40,50,60,70,80τ =  respectively. It is seen from this figures that the 

microrotaion increases with the increase of Spin gradient viscosity parameter ( )Λ  and is going to the 

upward direction from the horizontal wall with the increase of time. While arising at 70τ =  and 80  

the results also increasing with time. Other effects of temperature are shown in figures (19-26) for 

different values of Prandtl number ( 0.71,1.0,7.0)rP =  at time 10,20,30,40,50,60,70,80τ =  

respectively. One the other hand, at salt water the Prandtl number is ( 1.0)rP = . It is seen from this 

figures that the temperature distribution is decreases with the increase of Prandtl number and the flow 

pattern is directed to the outer wall with the increase of time. While arising at 70τ =  and 80  the flow 

becomes steady state. 
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Figure 3. Velocity Profile for different 

values of Grashoff Number ( ) and  = 

0.01, M = 0.02 at  time  = 10 

 

Figure 4. Velocity Profile for different 

values of Grashoff Number ( ) and  = 

0.01, M = 0.02 at time  = 20 
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Figure 5. Velocity Profile for different 

values of Grashoff Number ( ) and  = 

0.01, M = 0.02 at time  = 30 

 

Figure 6. Velocity Profile for different values 

of Grashoff Number ( ) and  = 0.01, M = 

0.02 at time  = 40 

Y Y 

Y Y 



Academic Research International 

  

ISSN-L: 2223-9553,  ISSN: 2223-9944  

Vol.  2,  No. 1,  January  2012 

 

Copyright © 2012 SAVAP International 

www.savap.org.pk  
www.journals.savap.org.pk        

69 

 

                                 
 

 

 

                                 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20
0

1

2

0 10 20
0

1

2

0 10 20
0

1

2

0 10 20
0

1

2

=0.2,0.4,0.6 =0.2,0.4,0.6 

       

U 
 U 

Figure 7. Velocity Profile for different values of 

Grashoff Number ( ) and  = 0.01,M = 0.02  at 

time  = 50 

Figure 8. Velocity Profile for different values of 

Grashoff Number ( ) and  = 0.01,    M = 0.02 at 

time  = 60 
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Figure 10. Velocity Profile for different values of 

Grashoff Number ( ) and  = 0.01, M = 0.02 at 

time  = 80 
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Figure 11.  Microrotation Profile for 
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Figure 13.  Microrotation Profile for different 
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Figure 14.  Microrotation Profile for different 

values of Spin Gradient viscosity parameter(Λ) 

and ∆ = 0.01, M = 0.02 at time  = 40 
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Figure 15. Microrotation Profile for different 
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Figure 16. Microrotation Profile for 
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Figure17.  Microrotation Profile for different 

values of Spin Gradient viscosity parameter(Λ) 

and ∆ = 0.01, M = 0.02  at time  = 70 

 

Figure 18. Microrotation Profile for different 

values of Spin Gradient viscosity parameter(Λ) 

and ∆ = 0.01, M = 0.02  at time  = 80 
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Figure 19. Temperature Profile for different 

values of Prandtl Number ( ) and M = 0.02 at 

time  = 10 

 

Figure 20. Temperature Profile for different 

values of Prandtl Number ( ) and M = 0.02 at 

time  = 20 
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Figure 21. Temperature Profile for different 

values of Prandtl Number ( ) and M = 0.02 at 

time  = 30 

 

Figure 22. Temperature Profile for different 

values of Prandtl Number ( ) and M = 0.02 at 

time  = 40 
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Figure 24. Temperature Profile for different 

values of Prandtl Number ( ) and M = 0.02 

at time  = 60 
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